
COPYRIGHTED SOFTWARE: SEPARATING THE
PROTECTED EXPRESSION FROM UNPROTECTED

IDEAS, A STARTING POINT'

J. DIANNE BRINSON *

Copyright protects only an author's expression of ideas, not the ideas themselves.

Now that it is clear that copyright protects computer programs, courts must do for

computer programs what courts have found difficult to do for literary and artistic works

— separate ideas from expression. This article offers two principles or suggestions for

beginning the process of separating a computer program's unprotected ideas from its

protected expression; (I) do not confuse protected expression with program code; and

(2) do not confuse a program's unprotected ideas with its function.

L INTRODUCTION

If we want a computer to solve a particular problem, we must give the computer a

"recipe" that spells out the exact steps which the computer must execute to reach that

problem's solution.' The recipe must be written so precisely that the computer can follow

the instructions, and it must be written in a form of notation (code) that the computer

can mechanically comprehend. 2 The recipe that instructs the computer is called a pro-

gram. 5 Programs commonly are referred to as "computer software."'

A computer can do only what it is instructed to do. A person must write the program

that instructs the computer. In the United States, authors of computer programs may

claim copyright protection for their works. 5 The exclusive rights of copyright give the

creator of a computer program valuable protection against unauthorized copying and

t Copyright © Boston College Law School.

* Associate Professor of Law, Georgia State University College of Law, Atlanta, Georgia; J.D.,

Yale Law School (1976); B.A., Duke (1973); admitted to the bar in Georgia and California.

1 S. ALAcac & M. ARRAS, THE DESIGN or WE1,1.-STRUCTURED AND CORRECT PROGRAMS 1 (1978).

Id, Although a computer cannot think, it can execute correctly written instructions faster than

a human could. See R. SAI:I'MAN, COPYRIGHT IN COMVUTER-READABLE WORKS 59 (1977).
3 S. Ai,, etc & M. AMR, 1- 14plil note 1, at 1.

"Software", in its broadest sense, includes everything in a computer system that is not "hard-

ware," the physical components of the computer that actually perform operations. This broader

definition of software includes, in addition to programs, such related material as documentation,

Ilow charts, and user manuals. Note, Defining the Scope of Copyright Protection for Computer Software,
38 S'I'AN. L. RE\'. 497, 500 (1986). For a more detailed discussion of the term "software" sec
Keplinger, Computer' Software — Its Nature and Rs Protection, 30 EMORY L.J. 483, 484-88 (1981).

' See, e.g., Whelan Assocs. v. Jaslow Dental Laboratory, Inc., 797 F,2,1 1222, 1223 (3d Cir. 1986),

cert. denied, 107 S. Ct. 877 (1987); Apple Computer, Inc. v. Franklin Computer Corp., 714 F.2d

1240, 1247 (3d Cir. 1983). See generally I M. NIMMER, NIMMER ON COPYRIGHT § 2.04[C] (1987).

There is also an international trend toward i;opyright protection for software. Oman, Software As
Seen by the U.S. Copyright Office, 28.IDEA 29, 33 (1987). The work Intellectual Properly Rights in an
Age of Electronics and Informaiiim (1986) [hereinafter OTA Report], prepared by the Office of Tech-

nology Assessment (OTA), "examines the impact of ... advances in communication technologies

on [our) intellectual property system." Id. at iii.

803

804	 BOSTON COLLEGE LAW REVIEW	 [Vol. 29:803

use of the work.° Copyright protection extends, however, only to the author's "expres-

sion" of ideas, and not to the underlying ideas used by that author. Ideas are open to

everyone, and others are free to study a copyrighted work and take its ideas.'

Now that it is dear that software is protected by copyright, software producers are

bringing copyright infringement suits to stop the unauthorized sale of alleged clones of

their copyrighted programs. The defendant's position in such a case is likely to be that

the defendant took merely unprotected ideas from the plaintiff's work." Such a defense

requires the court to separate a program's protected expression from its unprotected

ideas. In literature and drama, the more traditional areas of copyright, courts have, for

years, had trouble separating expression from ideas." Courts now must distinguish

between ideas and expression for computer programs, works written in technical code

language for the purpose of instructing computers. The dividing line between idea and

expression, elusive in literature, cannot easily be drawn for programs. As one federal

district court judge noted recently, "computer programming ... [isj not readily compre-

hended by the uninitiated. The challenge of counsel to make comprehensible for the

court the esoterica of bytes and modules is daunting." 1 °

The purpose of this article is to suggest a starting point for separating a program's

ideas from its expression. This starting point consists of two principles. First, do not

confuse protected expression with the program code. A program's protected expression

is not limited to the literal code of the program. Second, do not confuse a program's

unprotected ideas with its function. A program, whatever its function, contains many

unprotected ideas.

These two principles, drawn from non-software copyright cases, discussed in Part

11 of this article, and from program design concepts, discussed in Part 111 of this article,

are the focus of Part IV of this article. The Third Circuit's recent decision in Whelan
Associates v. faslota Dental Laboratory, I ac., 1 one of the cases discussed in Part I V, recognizes

the first principle but not the second principle. Part V hypothesizes that if courts

'I Software is easily duplicated within the computer in a process that resembles the audio taping

of a record. Piracy here and abroad is a major problem for the U.S. software industry. See OFFICE.

OE COMPUTERS AND BUSINESS EQUIPMENT, U.S. DEPARTMENT or CommEncal, A COMPETITIVE AssEss-

str.n•r OE THE U.S. SOFFWARE INDusTkv 51-52 (1984) [hereinafter REPORT]. With the appearance of

the microcomputer and personal computers in the late 1970s, the software market increased

dramatically, The distribution of mass-marketed programs for such microcomputers as the IBM

l'C has become a multibillion dollar industry. Note, Copyright Protection of Computer Software, 5
COMPUTER LAW J. 413, 416 ii.10 (1985).

'The distinction between the protected expression and the unprotected ideas originated in

Baker v. Selden, 101 U.S. 99 (1879). The present version of the federal copyright statute codifies

the idea/expression dichotomy, stating in part that "in no case does copyright protection ... extend

to any idea" 17 U.S.C. 102(h) (1982). See generally 3 M. NIMMER, NIMMER ON COPYRIGITF

§ 13.03[A] (1987); infra notes 52-63 and accompanying text.

" E.g., Whelan Assocs. v. Jaslow Dental Laboratory, Inc., 797 F.2d 1222 (3d Cir. 1986), cert.
denied, 107 S. Ct. 877 (1987). See infra Section IV for other cases analyzing this defense.

See infra Section 11 D.

Q-Co Indus. v. Hoffman, 625 F. Stipp. 608, 610 (S.D.N.Y. 1985).

11 797 F.2(1 1222 (3d Cir. 1986), cert. denied, 107 S. Ct. 877 (1987).

Whelan is the subject of a special forum issue of the journal of Law and Technology. That issue

contains lour commentaries on Whelan: Ladd & Joseph, Expanding Computer Software Protection by
Limiting the Idea, 2 J.L. & TEcu. 25 (1987); Goldhammer, Computer Programs and Technological
Innovation: Testing the Copyright Law, 2 J.L. & TEcii. 17 (1987); Karam, Countervailing Considerations,
2 J.L. & Tam. 25 (1987); and ‘Vessel, Substantial Similarity, 2 J.L. & TECH. 35 (1987).

September 1988]	 COPYRIGHTED SOFTWARE	 805

perpetuate the Whelan court's error of extending copyright protection beyond program

code, without recognizing that a program contains many unprotected ideas, the result

will be that courts will over-protect early developers of software at the expense of later

developers. Finally, after discussing the potential impact of the Whelan error, Part V of

this article proposes that courts avoid the overprotection problem by recognizing this

article's second principle that there are many unprotected ideas subsumed in a computer

program's function and by using copyright's traditional "levels of abstraction" analysis.

II. THE LAW OF COPYRIGHT

A. Copyrightability

Copyright law in this country is governed by a federal statute, the Copyright Act of

1976. 12 Copyright protection arises automatically when an author fixes an original work

in any tangible medium of expression." Under the statute the owner of a copyright may

register his or her copyright claim with the Copyright Office, but no registration is

required to create the rights of copyright." Registration is, however, a prerequisite to

initiating an action for copyright infringement."

Although copyright protects only original works, an author meets the originality

requirement by simply creating the work. Originality requires neither novelty nor

uniqueness.'" To be original, a work need only be created independently by the author

Pub. L No. 94-553, 90 Stat. 2591 (1976) (codified at 17 U.S.C. §§ 101-810 (1982)). Article

1 of the U.S. Constitution gives Congress the authority to enact laws to protect the rights of authors

and inventors. U.S. CoNsT. ail, 1, § 8, c1.8. Congress enacted the first federal copyright statute in

1790. Act of May 31, 1790, 13th Cong., 2d Sess., 1 Stat. 124 (1790). This early statute was a

forerunner of the present copyright statute, which is cited above in this footnote. The federal

statute preempts any state attempts at legislating in the copyright area.

" 17 U.S.C. § 102(a) (1982).
" Id. §§ 102(a), 408. Sections 408-912 of the copyright statute describe the registration pro-

cedures. Briefly, one registers a copyright claim by sending an application to the Copyright Office

together with Iwo copies of the work Mid a ten dollar filing fee. Id, §§ 408, 409, 708.

' 5 Id. §§ 411, 501(b). Early registration offers a procedural benefit. In judicial proceedings a

certificate of registration made within five years of the first publication of the work is prima facie

evidence of the copyright's validity. Id, § 410(c). The copyright statute defines "publication" as "the

distribution of copies ... of a work to the public by sale or other transfer of ownership, or by

rental, lease, or lending." Id. § 101. Also, statutory damages or attorney's fees are not available for

(1) infringtonent of copyright. in an unpublished work before the registration (late; 6r (2) for

infringement begun between the first publication date and the registration date, if' ivgistration is

not filed within three months (tithe first publication. Id. § 412. Sections 509 mid 505 the copyright

statute cover damages and attorney's fees. See id. §§ 509, 5(15.

The copyright statute requires that a notice of copyright be placed on all publicly distributed

copies of a work claimed to be protected by copyright in order to give reasonable notice or that.

claim. Id. § 401. There are sonic. exceptions to that rule. The omission of notice does not invalidate

a copyright If the notice was omitted front only a relatively small number of copies. Id. § 905(a)(1).

Additionally, the omission of notice from a large number of publicly distributed copies does not

invalidate the copyright if the copyright is registered within five years of the "no-notice" publication

and a reasonable effort is made to add notice to all collies that were distributed in the United

States. Id. § 405(a)(2).

I" Alfred Bell & Co, v, Catalda Fine Arts, 191 17.2d 99, 102-03 (2d Cir. 1951). The Copyright.

Office does not substantively examine a work for originality before registering it. Midway Mfg. Co.

v. Bandai-America, Inc., 546 F. Stipp. 125, 143-44 (D.N.j. 1082).

Uniqueness is a prerequisite for patentability. To qualify for a patent a product or process must

806	 BOSTON COLLEGE LAW REVIEW	 [Vol. 29:803

rather than copied front sonic other work. The work must owe its origin to the author
claiming copyright rights. 17 Accordingly, the statute requires that the work demonstrate
only minimal creativity. No artistic merit is required."

The copyright statute confers on the copyright owner five exclusive rights over the
copyrighted work.' The three rights that apply to software are the right to reproduce
or copy the work; the right to distribute copies of the work to the public by sale, rental,
lease, or loan; and the right to prepare derivative works based on the copyrighted work. 2"

These exclusive rights are really product control rights; without them, an author would
have no recourse against use and exploitation of his or her work by others. 21 One who
violates any of the copyright owner 's exclusive rights is an "infringer," 22 who is liable to
the copyright owner for damages and profits stemming from the infringement." The
federal district courts have exclusive original subject matter jurisdiction over copyright

be new, useful, and non-obvious to one with ordinary skill in the relevant discipline. 35 U.S.C.

§§ 101-03 (1982).

17 Alfred Bell, 191 F.2d at 102.

"See Illeimein v. Donaldson Lithographing Co., 188 U.S. '239, 251 (1903). See generally I M.

NIMMER, supra nme 5, §§ 2.0 1[13], 2.08(81.

17 U.S.C. § IOU (1982). The "owner" is normally the author, but the author may transfer all

or part of the copyright and any of the exclusive rights. Id. §§ 201(a), (d). The rights in most works

created "on the job" are held by the creator's employer, for in the case of a "work made for hire"

the employer is deemed the author unless the actual creator arid the employer have expressly

agreed otherwise in a signed written document. Id. § 201(b). Section 101 of the copyright act defines

"work for hire." See id. § 101.
2" Id. § 106. The other Iwo rights are the public performance right and the public display right.

Id. The statute defines a "derivative work" as "a work based upon one or more pre-existing works,

such as a translation ... abridgment, condensation, [or some other transformed presentation)." Id,
§ 101. A derivative work is copyrightable separately from the base work if it meets the minimal

"originality" requirement fOr copyright. So long as the new work contains any distinguishable

variation from the base work it will have SLIrliCiera originality to support a separate copyright. I M.

NIMMER, AI(Pra note 5, § 3.01. The derivative work's copyright covers only the material added to

the underlying work to create the derivative work. 17 U.S.C. § 103(b) (1982).

2 ' See 17	 § 301 (1982) and 35 U.S.C. § 6281 (1982). Copyright, patent, and trademark

law sometimes are referred to as "intellectual property" law. E.g., EPs -rm, MonEtus INTELLECTUAL

PRopErcry (1986); KINTER LAHR, AN INTELLECTUAL. PROPERTY PRIMER (1975). This body of law

enables the creator of sonic product of mental effort to exercise ownership control rights somewhat

similar ter rights given by law to the owner of a piece of real or personal property.

ss 17 U.S.C. § 501(a) (1982). The copyright owner's exclusive rights are nut absolute. Those

rights arc subject to "fair use" by others, which can he loosely characterized as reasonable limited

use of the work, for purposes such as scholarship or literary criticism. The fair use doctrine was

first developed by the courts but is now codified. See irl. § 107. Section 107 sets out four factors for

courts to consider in determining whether an unauthorized use is "fair use". Id. See generally Note,

Toward a Unified Theory Of Copyriglu 10-ingerneni For an Advanced Technological Era, 96 HARV. L. Rev.

450 (1982). Sections 108-18 of the Copyright Act add further details concerning particular uses of

certain types of copyrighted works by non-owners. See 17 U.S.C. §§ 108-18 (1982). Recently, the

Court of Appeals fir the Eleventh Circuit considered the limits of "fair use" in Pacific and Southern

Co. v. Duncan, 744 F.2d 1490, 1494-95 (1 lth Cir. 1984), cert. denied, 471 U.S. 1004 (1985).

The "first sale" doctrine places a further limitation on the copyright owner's control rights. See
17 U.S.C. § 109 (1982). Under the "first sale" doctrine the owner of a copy of a copyrighted work

has the right to sell or dispose of that copy without the permission of the copyright owner. Id.
Ownership of the copyright is distinct from ownership of the material object (book, diskette, etc.)

in which the work is embodied, Id. § 202.

" Id. §§ 504, 505.

September 1988]
	

COPYRIGHTED SOFTWARE 	 807

infringement actions" and may grant temporary and final injunctions to prevent or

restrain acts of infringement. 25 Such injunctions are operative throughout the United

Slates- 2 n

B. Copyrightahility of Computer Programs

The Copyright Office began registering copyrights for computer programs in
1964. 27 The legislative history of the 1976 Copyright Act indicates that Congress intended
for the revised copyright statute to protect computer programs. The House Committee
Report stated that copyrightable literary works'" "include computer data bases, and
computer programs to the extent that they incorporate authorship in the programmer's
expression of original ideas, as distinguished from the ideas themselves." 2• Congress
resolved any remaining doubts as to copyrightability of computer programs in December,
1980, by enacting the Computer Software Copyright Act of 1980, an amendment to the
copyright staftue.30 The Computer Software Copyright Act, according to its legislative
history, clearly applied the 1976 copyright law to computer programs." The 1980 Act
added a definition of "computer program" to the definitions section of the copyright

24 28 U.S.C. § 1338 (1982).
23 17 U.S.C. § 502(a) (1982).
2"Id. § 502(b).
"One commentator has written that the Copyright Office had both statutory doubt and

constitutional doubt concerning the copyrightability of computer programs. However, the Copyright
Office began permitting registration of programs, leaving a determination of copyrightability to the
courts. Samuelson, CONTU Revisited: The Case Against Copyright Protection for Computer Programs in

Machine-readable Form, 1984 DUKE 1..j. 663, 692 11,109. The "statutory doubt" was whether machine-
readable versions of programs could be "copies" within the meaning of that term as it was used in
the 1909 copyright statute, the immediate predecessor to the present statute. Id. at 692 n.109. In
White-Smith Music Publishing Co. v. Apollo Co., the Supreme Court held that copyright protection
extended only to "copies" which were perceptible to humans. 209 U.S. I, 17 (1908). The doubt on
the constitutional level was whether machine-readable programs could be considered an author's
writings. Samuelson, supra, at 692 11,109. The enabling clause in the Constitution authorizes Con-
gress to enact legislation giving authors rights to their writings. U.S. CoNsT. art. 1, § 8, d.8. In Data
Cash Systems, Inc. v. jS & A Crimp, Inc., 480 F. Stipp. 1063, 1069 (N.D. III. 1979), aff 'd on other

grourt4 628 F.2d 1038 (7th Cir. 1980), decided under the 1909 statute, the court concluded, based
on White-Smith, that a program in its object code phase in the form of a ROM installed in a computer's
circuitry was a machine part rather than a copy of the source code program. See infra part III A
for a discussion of these technical terms. See' Note, Computer Copyright Law: An Emerging Form of

Protection Far Object Code Software After Apple v. Franklin, 5 CommrrEtt LAW j. 233, 243-46 (1984).
The current statute avoids the While-Smith problem, for it provides for copyright protection for
"original works of authorship fixed in any tangible medium of expression, now known or later
developed, from which they can be perceived, reproduced, or otherwise communicated, either directly

or with the aid of a machine or device," 17 U.S.C. § 102(a) (1982) (emphasis added).
28 17 U.S.C. § 102(a)(1) (1982).
29 H.R. REP. No, 1476, 94th Cong., 2d. Sess. 51, 54 (1976) reprinted at 1976 U.S CODE CONG.

& ADMIN, NEWS 5659, 5667 [hereinafter H.R. - REP. No. 1476]. The Senate Report on the 1976 Act
was somewhat ambiguous on the question of whether computer programs were "literary works".
See 1 M. NIMMER, supra note 5, § 2.041CJ, at 2.43 & n.21. For more on the attention given to
copyrightability of programs in drafting the 1976 Act, see Keplinger, supra note 4.

3° Act of December 12, 1980, Pub. L. No. 96-517, § 10, 94 Stat. 3015, 3028-29.
31 H.R. REF'. No. 1307, 96th Cong., 2d. Sess., reprinted at 1980 U.S. CODE CONG. & ADM/N.

NEWS 6460, 6486 [hereinafter H.R. Rr.e. No. 1307]; see also 1 M. NtstmEtt, supra note 5, § 2.04[C],
at 2-44.

808	 BOSTON COLLEGE LAW REVIEW	 [Vol. 29:803

statute." Furthermore, the revised copyright statute now makes it clear, by implication,

that unauthorized reproductions and adaptations of computer programs are infringing

acts unless the reproduction or adaptation falls within the scope of the statute's express

grant of' the right to make copies and adaptations of copyrighted programs for specified

purposes."

For the last several years, courts have routinely held that computer programs are

copyrightable "works of authorship."34 In the software infringement cases decided to

date, courts have granted relief for infringement of the exclusive copying, distribution,

and derivative works rights." The Copyright Office now routinely registers copyrights

for software, and software developers routinely file applications to register programs. 36

" 17 U.S.C. § 101 (1982). Section 101 now provides, in part, that a "computer program is a set

of statements or instructions to be used directly or indirectly in a computer in order to bring about
a certain result." Id.

" Id. § 117. The owner of a copy of a program may copy the program for archival purposes
and when necessary for use of the program in the computer. Id.

These 1980 amendments were recommended by the Commission on New Technological Uses
of Copyrighted Works (CONTU). H.R. REP. No. 1307, supra note 31, at 6482. Congress created
CON-Fu in 1974 to study copyright problems raised by growth of the computer industry. Act of

Dec. 31, 1974, Pub. L. No. 93-573, §§ 201-08, 88 Stat. 1873, 1873-75. CONTU recommended that

Congress amend the 1976 copyright act "to make it explicit that computer programs, to the extent

they embody an author's original creation, are proper subject matter of copyright." NATIONAL

COMMISSION ON NEW TECHNOLOGICAL. USES OF COPYRIGHTED WORKS, FINAL REPORT, (July 31, 1978)
[hereinafter CONTU REPORT']. CON -fu Commissioner John Hersey argued against extending
copyright protection to programs. Id. at 69. For a detailed discussion of CON"f Ws work, see
Keplinger, supra note 4; Samuelson, supra note 27.

"4 See, e.g., Whelan Assocs. v. Jaslow Dental Laboratory, Inc., 797 F.2d 1222 (3d Cir. 1986), cert.
denied, 107 S. Ct. 877 (1987); Apple Computer, Inc., v. Franklin Computer Corp., 714 F.2d 1240

(3d Cir. 1983); Williams Elecs., Inc. v. Artie 1nel., Inc., 685 F.2d 870 (3d Cir. 1982).
s5 e.g., Whelan, 797 F.2d at 1248 (copying and distribution); SAS Institute, Inc. v. S & H

Computer Sys., Inc., 605 F. Supp. 816 (M.D. Tenn. 1985) (derivative work).
3'1 Programs are registered as "literary works." 17 U.S.C. § 102(a)(1) (198'2). Some authors also

have sought to register screen displays as "audiovisual works." At the moment the Copyright Office's

position is that the audiovisual registration is superfluous. That viewpoint recently was called into

question by Digital Cotnnumications Assocs. v. Softklone Distrih. Corp., 659 F. Supp. 449 (N.D. Ga.

1987), where the court held that the copyright on a computer program does not extend to screen
display. Id. at 456. Contra M. Kramer Mfg. Co. v. Andrews, 783 F.2d 421, 422 (4th Cir. 1986), cert.
denied, 107 S. Ct. 77 (1987) (copyright on the visual display protects the underlying program that
produces the screen display).

In September, 1987, the Copyright Office held a hearing on the question of whether it should
allow separate registration of screen displays. Mace, Apple Urges Separate Copyright Registration of
Screen Displays, INFowouLD 101 (Sept. 14, 1987). In June of 1988, the Copyright Office issued a

registration decision stating that, in its view, all copyrightahle expression embodied in a program,

including screen displays, is a single work and should be registered on a single application form.

Notice of Registration Decision: Registration and Deposit of Computer Screen Displays, 53 Fed.
Reg. 21817 (1988) (37 CFR Pt. 202). Audiovisual copyrights are available for videugames, which
are operated by computer programs.

The writing on the subject of copyright protection for software has mushroomed in the past
few years. On the practical level, see, e.g., T. SMF,D1NGHOEF, THE LEGAL GUIDE TO DEVELOPING,

PROTECTING, AND MARKETING SOFTWARE (1986). On the scholarly level, see Conley & Bryan, A
Unifying Theory Far the Litigation of Computer Software Copyright Cases, 63 N.C.L. REv. 563 (1985);
Karjala, Copyright, Computer Software, and The New Protectionism, 28 JummF.-Docs 33 (1987); Keplinger,
supra note 4; Merrell, Tailoring Legal Protection for Computer Software, 39 STAN. L. REV. 1329 (1987);
Nimmer & K rauthaus, Copyright and Software Technology Infringement: Defining Third Party Development

September 1988]	 COPYRIGHTED SOFTWARE	 809

Many software distributors also attempt to use state trade secrets laws to protect software

from piracy." Patent protection is also available for software that meets the stringent

requirements for a patent grant. 38

C. An Infringement Case

In a copyright infringement action the plaintiff makes out his or her prima facie

case by showing that the plaintiff owns a valid copyright; and that the defendant "copied"

the work protected by the plaintiff's copyright." A plaintiff's copyright is valid if the

work claimed to be protected is an original work of authorship and is appropriate

copyright subject matter. 48 As to the "copying" element, the plaintiff rarely can obtain

direct evidence that the defendant copied the work."' Rather, the plaintiff generally puts

in circumstantial evidence of the defendant's copying. This circumstantial evidence

consists of two elements. First, the plaintiff shows that the defendant had access to the

infringed work.^ 2 To date plaintiff); in software copyright cases have been able to prove

Rights, 62 1ND. L.J. 13 (1986); Samuelson, supra note 27; Note, supra note 4; and Note, supra note

27. The University or Pittsburgh Law Review devoted an entire issue to the future of software

protection (Vol. 47, No. 4). That issue includes Davidson, Common Law, Uncommon Software, 47 U.

Pri-r. L. Rev. 1037 (1986) and Goldstein, Infringement of Copyright in Computer Programs, 47 U. Prrr.

L. Rev. 1119 (1986).

57 Many writers have noted that state law trade secret protection may he used to supplement

copyright protection on software. See, e.g., T. SMEDINGHOFF, supra note 36; Conley & Bryan, supra
note 36; Gilhurne & Johnston, Trade Secret Protection for Software Generally and in the Mass Market, 3
Com ► uTEK L. J. 211 (1982); Voches, Protection of Computer Software by Patents, Trade Secrets, and
Trademarks, 22 Tour AND INSUR. LJ. 354 (1987); Note, supra note 6; Note. supra note 4.

For an overview of international protection for software, see Nimmer & Kraut haus, Classification
of Computer Software For Legal Protection: International Perspectives, 21 INT .'. L. 733 (1987).

5g Parent protection is available only for non-obvious works. 35 U.S.C. § 103 (1982). One

commentaun: has stated that very few programs could meet the rion-obviousness requirement. See
1.D. BENDER, ComptrrEu LAw § 3A.02 (1984). Another writer, however, considers patent protection

of software to be of growing importance. Davidson, Protecting Computer Software: A Comprehensive
Analysis, 1983 Acre. Sr. Li. 611, 648. See Dann v. Johnston, 425 U.S. 219, 229 (1970) (program

not patentable because it was obvious). Furthermore, a patent will he denied if it is determined that

what is offered as a patentable process is really an unpatentable mathematical algorithm, See
Gottschalk v. Benson, 409 U.S. 63 (1972). See generally Davidson, supra, at 634,-51.

3" See generally 3 M. NtriimER, supra:note 5, § 13.01.
'1" 17 U.S.C. §§ 102-03 (1982). A copyright registration certificate issued within five years of

the first. "publication" of the work is prima facie evidence of the copyright's validity. Id. § 410(c).

Once the plaintiff establishes prima facie proof of validity through the registration certificate, the

burden of persuasion as to the invalidity of the copyright is on the defendant. 3 M. NIMMER, supra
note 5, § t2.11.

To prove ownership, a plaintiff who authored the work in issue need only prove authorship.

I f, however, the plaintiff acquired the copyright by transfer or assignment, and is not the party to

whom the copyright was registered, the plaintiff must prove chain of title. If the non-author plaintiff

took an assignment of the copyright from the original owner and then registered the copyright in

his or her own name, the certificate of registration is prima facie evidence of the ownership. See 3
M. NIMSIER, .supra note 5, *12.11.

41 Defendants may, however, admit to copying the work, obviating the need to prove copying.

See, e.g., Apple Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240, 1245 (3d Cir. 1983)

(defendant admitted copying the work, but raised various defenses, including absolute non-copy-

riglitability of software).

42 See, e.g., Whelan Assocs. v. .jaslow Dental Laboratory, Inc., 797 F.2d 1222, 1232 (3d Cir.

1986), cert. denied, 107 S. Ct. 877 (1987). See generally 3 M. NIMMER, supra note 5, § 12.111D1. If the

810	 BOSTON COLLEGE LAW REVIEW 	 [Vol. 29:803

the defendant's access to the work.43 Second, the plaintiff shows that the defendant's
work is "substantially similar" to the allegedly infringed work:"

The well-known copyright treatise by Nimmer notes that determining what consti-
tutes substantial similarity, and thus infringes a copyright, is "one of the most difficult
questions in copyright law, and one that is the least susceptible of helpful generaliza-
tion."45 At one extreme, two works need not be literally identical to be substantially
similar for purposes of copyright infringement. 46 Thus, a defendant cannot escape a
finding of substantial similarity by paraphrasing rather than repeating the plaintiff's
work. 47 At the other extreme, if the only similarity between the plaintiff's and defendant's
work is the use of the same abstract ideas, substantial similarity is lacking,o for copyright
does not prohibit persons from borrowing abstract ideas contained in a copyrighted
work.'" For a court to find infringement, the defendants must have copied not just the
plaintiff's ideas, but the plaintiff's expression of the ideas." Accordingly, the substantial
similarity that constitutes copyright infringement must be expression-level similarity, not
merely idea-level similarity."

plaintiff cannot prove access by direct evidence, he or she may instead show that the similarity
between the defendant's work and the allegedly infringed work is so striking that the court may
infer access. Arnstein v. Porter, 154 F.2d 464, 468 (2d Cir. 1946).

43 See, e.g., Whelan, 797 F.2d at 1232 (the defendant had used and marketed the plaintiff's
program); Digital Communications Assocs. v. Softklone Distrib. Co., 659 F. Supp. 449, 464-65
(N.D. Ga. 1987) (the defendants acknowledged access to the plaintiff's mass-marketed program).

44 Whelan, 797 F.2d at 1232. Proof of access plus substantial similarity permits but does not
require a finding of copying. The trier of fact may believe that the defendant independently created
the work without copying the plaintiff's copyrighted work. 3 M. NIMMER, supra note 5, § 12.11 WI.
at 12-83. An independently created work that is identical to a pre-existing work does not violate
the copyright on the earlier work. Sheldon v. Metro-Goldwyn Pictures Corp., 81 F.2d 49, 54 (2d
Cir.), cert. denied, 298 U.S, 669 (1936).

Patent, unlike copyright, does protect against independently created duplication. Alfred Bell
& Co. v. Catalda Fine Arts, Inc., 191 F.2d 99, 103 (2d Cir. 1951).

" 3 M. NIMMER, supra note 5, § 13.03, at 13-20. In the most recent of the software copyright
cases, the defendant has denied that the defendant's work is substantially similar to the plaintiff's.
See infra Part IV.

4'' M. NIMMER, supra note 5, at § 13.03, at 13-20 & n.4; see, e.g., Sid & Marty Krofft Television
Prod., Inc. v. McDonald's Corp., 562 F.2d 1157 (9th Cir. 1977) (defendants' television commercials
infringed the copyright on plaintiff's television show for children).

47 3 M. NIMMER, supra note 5, § 13.03, at 13-20.1, 13-20.2, & 11.8.
4" Id. § 13.03[A], at 13-21.
" 17 U.S.C. § 102(6) (1982) (codification of earlier case law establishing the principle of the

non-protectability of ideas).
3 M. NIMMER, supra note 5, § 13.0314 at 13-21. The topic of proving substantial similarity

in software copyright cases has been the focus of three recent law review articles. See Conley &
Bryan, supra note 36; Comment, Copyright Infringement of Computer Programs: A Modification of the
Substantial Similarity Test, 68 MINN. L. REV. 1264 (1984); Note, supra note 4.

31 One may ask the two relevant questions in either order: (I) Is the defendant's work as a
whole substantially similar to the plaintiff's work? if yes, is the similarity more than idea-level
similarity? or (2) Does any expression contained in the plaintiff's work appear in the defendant's
work? If yes, was sufficient expression taken so that the defendant's work is substantially similar to
the plaintiff's, justifying a finding of infringement? Whatever the order of the questions, the court
ultimately must separate expression from idea. See infra part II D.

The authors Conley and Bryan contend that liability in a software copyright case should not
depend on a showing or substantial similarity between the plaintiff's and defendant's works. Rather,
they argue that the focus in software copyright litigation should be the defendant's conduct. Conley
& Bryan, supra note 36, at 608-13.

September 19881
	

COPY RIGHTED SOFTWARE	 811

D. Separating Ideas from Expression: The General Framework of the Analysis of the Dichotomy

Copyright does not protect the copyright owner from having others take the ideas

used in the copyrighted work. 52 This "axiom of copyright law"" has long been recognized

by the courts''' and now is stated expressly in the copyright statute." The rationale

underlying this axiom is the policy underlying copyright grants: The purpose of copy-

right is to promote learning and progress in intellectual pursuits by encouraging authors

to make their works available to the public." Copyright protection for abstract ideas

would undermine that goal by permitting one author to withdraw ideas front the pool

of materials available to other authors." Copyright thus must balance two. interests:

protecting authors' efforts and keeping ideas available for others to use."

The 1879 case of Baker v. Selden• laid the foundation for the idea/expression

dichotomy. In Baker, the plaintiff sought protection for bookkeeping forms contained in

a book that explained a novel method of bookkeeping." The Supreme Court held in

Baker that the copyright on a book does not give the copyright holder "an exclusive

property in the art described therein."" 1 Furthermore, the Court ruled, where use of

the idea necessarily requires copying of the work itself, that copying is not infringement."

Accordingly, an author may not use the copyright laws to obtain a monopoly on a system

or method. In the 1954 case of Mazer v. Stein, the Supreme Court interpreted Baker to
hold that copying an idea without copying the expression does not constitute infringe-

ment. 65

Because copyright does not protect against the taking of ideas, the "substantial

similarity" that serves as indirect proof of copying must be expression-level similarity,

not merely idea-level similarity. 6 •1 Over the years, many courts have noted that separating

52 17 U.S.C.	 102(h) (1 984
55 Many cases refer to this principle as an axiom of copyright law. See, e.g., Sid & Marty Kraft

Television Prods., inc. v. McDonald's Corp., 562 F.2d 1157. 1163 (9th Cir. 1977). See generally 3 M.
NIMMER, supra note 5, § 13.03.

"See, e.g., Sheldon v. Metro-Goldwyn Pictures Corp., 81 F.2d 49, 54 (2d Cir.), cert. denied, 298
U.S. 669 (1936) (others may copy the theme or idea of a work, but not its expression); Nichols v.

Universal Pictures Corp., 45 F.2d 119, 121 (2d Cir. 1930).
5' 17 U.S.C. § 102(6) (1982). The legislative history indicates that codification of the idea/

expression dichotomy "in no way enlarges or contracts the scope of copyright protection under the

present law. Its purpose is to restate, in the context of the new single Federal system of' copyright,

that the basic dichotomy between expression and idea remains unchanged." 1-4.1(Er. No. 1476, supra
note 29, at 5670.

5" See Chafee, keftection,s on the Law of Copyright: I, 45 CoLum. L. REV. 503, 504-15 (1945).
" Use of the unprotected ideas sometimes erroneously has been called "fair use". See, e.g.,

Sheldon, 81 F.2d at 54. See supra note 22 for a discussion of the "term of art" meaning of "fair use,"
5" Sid & Marty Krofft Television Productions, Inc. v. McDonald's Corp,, 562 F.2d 1157, 1163

(9th Cir. 1977).

59 101 U.S. 99 (1879).

wit/. at 100.

4 ' Id, at 102,

"2 Id. at 103. See 1 M. 'NIMMER, supra note 5, § 2.18 for a discussion of other interpretations of
Baker (blank forms are not copyrightable; copying for use is not infringement).

t'y 347 U.S. 201, 217 (1954). For a modern-day case similar in Baker, see Universal Athletic
Sales Co. v. Salkeld, 511 F.2d 904 (3d Cir. 1975), where the court denied copyright protection for
the exercises shown in plaintiff's work.

64 Sid & Marty Krafft Television Productions, Inc. v. McDonald's Corp., 562 F.2d 1157, 1164
(9th Cit.. 1977).

812	 BOSTON COLLEGE LAW REVIEW 	 {Vol. 29:803

a work's ideas from its protected expression is difficult. 63 Of course, if the copyright
defendant literally duplicates the copyrighted work — as for example, a word-for-word
appropriation of an entire song or poem — the defendant clearly has taken the author's
expression.66 A defendant may take protected expression, however, without engaging in
word-for-word copying. A playwright may pirate an earlier play's dramatic meaning, for
example, and violate its copyright, without copying the dialogue itself. 67 Neither product
duplication nor near-identity is necessary to establish infringement.6a The defendant's
work will have expression-level similarity with the plaintiff's if the "total concept and
feel" of the two works is the same. 69

Infringement is not confined to exact repetition of the copyrighted work in its
original form, but also includes other modes of adaptation, imitation, transfer or repro-
duction, in which the defendant may have altered the copyrighted work to disguise the
piracy." A defendant may not escape liability by showing that the new work is in a
different medium from the copyrighted work,'" for the copyright rights apply whatever
the medium. 72 Adding new material to that taken does not create immunity," nor does
changing details."

Although some courts have stated rules or generalizations concerning the separation
of ideas from expression," courts more often recognize that separating elements of the

15 See, e.g., Herbert Rosenthal jewelry v. Kalpakian, 446 F.2d 738, 742 (9th Cir. 1971) (quoting
Peter Pan Fabrics, inc. v. Martin Weiner Corp., 274 F.2d 487, 489 (2d Cir. 1960) ("no principle can
be stated as to when an imitator has gone beyond copying the 'idea', and has borrowed its 'expres-
sion'")).

w Literal similarity — virtual word-for- word taking— is always a similarity as to the expression.
3 M. NIMMER, supra note 5, § 13.03fAl, at 13-35.

"7 Sheldon v. Metro-Goldwyn Pictures Corp., 81 F.2d 49, 55 (2d Cir. 1936) ("A play may be
pirated without using the dialogue," for "speech is only a small part of a dramatist's means of
expression."). See infra, Part IV, for a discussion of this principle's application to software.

68 Sid & Marty Krafft, 562 F.2d at 1167.
6"See id. See generally 3 NI. NIMMER, supra note 5, § 13.03[4 at 13-30 & 11.36.
7"Universal Pictures Co., Inc. v. Harold Lloyd Corp., 162 F.2d 354, 360 (9th Cir, 1947).
7 ' See, e.g., Twentieth Century-Fox Film Corp. v. MCA, Inc., 715 F.2d 1327, 1328, 1329 n.4

(9th Cir. 1983) (the copyrighted works were a book and motion picture, whereas the defendant
produced a motion picture and a television show); Midway Mfg. Co. v. Bandai-America, Inc., 546
F. Supp. 125, 139, 147 n.22 (D.N.J. 1982) (copyrighted work was an arcade-size videogame, whereas
defendant's game was hand-size).

72 See generally 2 M. NIMMER, supra note 5, § 8.011111 (1987). In such cases the defendant's work
may be a derivative work based on the copyrighted work rather than a copy of that work. Although
a copyright owner has the exclusive right to make derivative works, giving too expansive a definition
to the concept of "derivative works" will create a conflict with the axiom that ideas are not protected.
Conley & Bryan, supra note 36, at 572-73.

75 Sheldon v. Metro-Goldwyn Pictures Corp., 81 F.2d 49, 56 (2tl Cir. 1936) ("No plagiarist can
excuse the wrong by showing how much of his work he did not pirate."). The defendants in Sheldon
maintained that much of their movie owed nothing to the plaintiff's copyrighted play. Id. Judge
Hand agreed, but, nonetheless, found infringement. Id. See generally 1 M. NIMMER, supra note 5,
§ 3.03.

" For a modern-day application of this principle, see the recent videogame case Atari, Inc. v.
North Am. Philips Consumer Elecs. Corp., 672 F.2d 607, 619 (7th Cir.), cert. denied, 459 U.S. 880
(1982).

76 E.g., Shipman v. R.K.O. Radio Pictures, Inc., 100 F.2d 533, 537 (2d Cir. 1938) (play's theme
is an unprotected idea); see, e.g., Reyher v. Childrens' Television Workshop, 533 F.2d 87, 91 (2d
Cir. 1976) ("infringement lies not in taking a general theme but in taking its particular expression
through similarities of treatment, details, scenes, events and characterization"); Dymow v. Bolton,

September 1988]	 COPYRIGHTED SOFTWARE	 813

plaintiff's work into protected expression and unprotected idea must be undertaken "ad
hoc."76 Many courts, after identifying the coniMon elements 'in the plaintiff's and defen-
dant's works, draw upon guidance offered by judge Learned Hand, Professor Zacchariah
Chafee, or Professor Nimmer. 77 These three scholars have suggested ways to characterize

the common elements in copyrighted works. In the 1930 case of Nichols v. Unitiersal
Pictures Corp., Judge Hand formulated his "abStractions test," which provides a frame-
work for examining the plaintiff's work:

Upon any work, and especially upon a play, a great number of patterns of
increasing generality will fit equally well, as more and more of the incident
is left out. The last may perhaps be no more than the most general statement
of what the play is about, and at times might consist only of its title; but
there is a point in these series of abstractions where they are no longer
protected, since otherwise the playwright could prevent the use of his "ideas,"
to which, apart from their expression, his property is never extended."

The abstractions test does not tell the factfinder where to draw the line between ideas
and expression. Instead, the "test" gives the trier of fact an analytical structure to use in
comparing the plaintiff's and defendant's works.

Professor Chafee, writing in 1945, offered further guidance about line-drawing,
stating that "the protection covers the 'pattern' of the work.' Professor Nimmer com-
bined Hand's observation that any work can be broken into patterns at different levels
of abstraction with Chafee's suggestion that substantial similarity should be determined
by comparing common elementS at a level that is somewhat abstract but still concrete
enough to constitute an expreSS1on. 8° Levels of abstraction provide answers to the ques-
tion "What is the work about?" The most abstract answer Might be, to use Romeo and
Juliet as an example, "boy meets girl." A slightly less abstract answer is "boy meets girl,
and the two come from hostile groups." An even less abstract answer is "boy meets girl
at a dance, the two come from hostile groups, and they eventually take the marriage
vows." The least abstract answer is the exact language chosen by the author Shakespeare
to express that theme of "boy meets girl." Nimmer's treatise uses a comparison of "Romeo
and Juliet" and "West Side Story" to illustrate this approach to the idea/expression
distinction, identifying thirteen common elements and coficluding that the common

elements form a pattern suffidently concrete to provide a basis for a finding that the
two works are substantially similar. 81 The pattern of the works are similar, involving a

11 f.2d 690, 692 (2d Cir. 1926) (sometimes cited as holding that plot is not copyrightable, but see
Nichols v. Universal Pictures Corp., 45 F.2d 119, 121 (2d Cir. 1930), disputing that point).

76 See, e.g., Peter Pan Fabrics, Inc. v. Martin Weiner Corp:, 274 F.2d 487, 489 (2d Cir. 1960).
77 See, e.g., Sid & Marty Krofft TelevisiOn Prods., Inc. v. McDonald's Corp., 562 F.2d 1157,

116364 (9th Cir. 1977) (citing Hand and Chafee),
78 Nichols, 45 F.2d at 121 '(citations omitted).
T° Chafee, supra note 5*6, at 513. Chalice gives as an example the idea of an lrish-Jewish marriage.

That idea may be benTo'we'd from a play and some characters and siniations inevitably go with that
idea and may be bOrrOvire'd. The play's pattern — the sequence of events and the development of
the interplay of the characters — must not be followed scene by scene. Id. at 513-14. Chafee's
example is drawn from Nichols, 45 F.2d 119.

8° 3 M. NIMMth, .supra note 5, 13.03[AI, at 13-22-13-23.
" Id. at 13-25-13-27. But see Knowles & Palinieri, Dissecting Krofft: An Expression of Nett Ideas in

Cupyright?, 8 SAN FERN. V.L. REV. 109, 137 (1980) (criticizing Nimmer's conclusion).

814	 BOSTON COLLEGE LAW REVIEW 	 [Vol. 29:803

meeting and romance between a boy and girl from hostile groups, with resulting killings

and misunderstandings.

Under certain circumstances, a second author is free to copy even expression. If

the author's idea may only be expressed in more or less stereotyped form, that expression

is free for the taking."' Otherwise, copyright protection of the expression would amount

to a grant of a monopoly over the idea itself." The leading case for this exception to

the idea/expression dichotomy is Herbert Rosenthal Jewelry Corp. n. Kalpakian, decided in

1971. In Kalpakian, the plaintiff alleged that the defendant infringed the plaintiff's

copyright on jeweled bee pins.81 The defendant, according to the court, was free to take

the "idea" of making jeweled pins in the shape of a bee. The plaintiff's protection was

limited to its pin's particular design or expression. In the court's view, however, other

expressions did not exist." The idea and its expression appeared to be indistinguishable,

noted the court."" Accordingly, the court ruled that the similarity between the plaintiff's

and defendant's pins was inevitable, flowing from the use of the "bee pin" concept."

Where the idea and expression are inseparable, concluded the court, copying the ex-

pression must be permitted." This principle sometimes is referred to as "merger" or

"unity" of idea and expression."

Later authors also are free to use incidents and plots that necessarily flow from a

theme or setting. 90 These "scenes a faire" are indispensable or standard to the treatment

of a theme, and so must be free for the taking. 9 ' Thus, the author of a fictionalized

account of the Hindenburg's last voyage may use a German beerhall revelry scene even

though an earlier work with the same theme also had a beerhall scene."'

Over the years, courts have separated unprotected ideas from pro-

tected expression for works of varying types, including fiction and

plays," non-fiction," songs,95 labels,"9 jewelry," games and con-

" 2 Herbert Rosenthal Jewelry Corp. v. Kalpakian, 446 F.2d 738, 742 (9th Cir. 1971). See generally
3 M. Nimmut, supra note 5, 13.031A], at 13-33 Sc n.44.

Kalpakian at 742 (citing, inter alia, Baker v. Selden, 101 U.S. 99, 103 (1879)).

n't Id. at 739.

" 5 Id. at 742.

" Id.
"/d. The First Circuit later expanded this principle, holding that if an idea is susceptible of

"only a limited number" of expressions, no particular form is copyrightable. Morrissey v. Procter

& Gamble Co., 379 F.2d 675, 678-79 (1st Cir. 1967).

'" In considering whether an idea and its expression are indistinguishable, the analyst must

state the idea abstractly rather than narrowly. Otherwise the idea will almost inevitably seem to

merge with its expression. 3 M. N1MMER, supra note 5, at 13-34 n.45; Conley & Bryan, supra note

36, at 590.

"" 3 M. N3MMER, SUpra note 5, § 13.03[A], at 13-32 & n.43.

9 ' Hoehling v. Universal City Studios, Inc., 618 F.2d 972, 979 (2d Cir. 1980).

92 Id.
13 See, e.g., Sheldon v. Metro-Goldwyn Pictures Corp., 81 F.2d 49 (2d Cir. 1936); Nichols v.

Universal Pictures Corp., 45 F.2d 119 (2d Cir. 1930).

" See, e.g., Harper and Row Publishers, Inc. v. Nation Enters., 471 U.S. 539 (1985). See generally
Gorman, Copyright Protection for the Collection and Representation of Facts, 76 HARV. L. Rev. 1569

(1963).

"5 See, e.g., Arnstein v. Porter, 154 F.2d 464 (2d Cir. 1946).

99 See, e.g., Kitchens of Sara Lee, Inc. v. Nifty Foods Corp., 266 F.2d 541 (2d Cir. 1959).

17 See, e.g., Herbert Rosenthal Jewelry Corp. v. Kalpakian, 446 F.2d 738 (9th Cir. 1971);

September 1988]	 COPYRIGHTED SOFTWARE	 815

tests," works of visual art, 99 television show characters,'" and videogarnes)" Some
commentators have stated that this idea/expression separation is really just a vehicle for
a policy decision as to whether the court should rule for the plaintiff in a copyright

suit) 02 These commentators argue that there is no real dichotomy of ideas and expres-
sion, because "an idea stated is an idea expressed."'" Idea and expression are "entwined"
in any given work.'" These commentators maintain that when a court decides that some
feature of a work is unprotected idea rather than protected expression, the court is
merely balancing the degree of protection granted the original author against the degree

of freedom allowed later authors. 105 If the unprotected "idea" is stated very abstractly
— "boy meets girl" — then most of the first author's work becomes protected expression,
unavailable for use by a second author. 1116 Conversely, if the work is deemed to contain
a number of more detailed and specific unprotected ideas, the second author's freedom
is expanded and the copyright owner's protection narrowed)"

THE NATURE AND DESIGN OF COMPUTER PROGRAMS

Software copyright cases traditionally include some sort of "technical primer" on
the nature of computers and computer programs." In today's typical software copyright
case, the factfinder must be able to evaluate (1) the plaintiff's contention that the
defendant's program is "substantially similar" to the plaintiff's copyrighted work; 1°9 and
(2) the defendant's contention that the defendant took, if anything, only unprotected

98 See, e.g., Morrissey v. Procter and Gamble Co., 379 F.2d 675 (1st Cir. 1967); cf. Landsberg v.
Scrabble Crossword Game Players, Inc., 736 F.2d 485 (9th Cir. 1984) (author of a game strategy
book claimed that the game's manufacturer infringed his copyright in writing its "player's hand-
book").

" See, e.g., Franklin Mint Corp. v. National Wildlife Art Exch., Inc., 575 F.2d 62 (3d Cir. 1978)
(painting); Roth Greeting Cards v. United Card Co., 429 F.2d 1106 (9th Cir. 1970) (greeting cards).

190 See, e.g., Sid & Marty Krofft Television Prod., Inc. v. McDonald's Corp., 562 F.2d 1157 (9th
Cir. 1977).

101 See, e.g., Atari v. North Am. Philips Consumer Elecs. Corp., 672 F.2d 607 (7th Cir.) cert.
denied, 459 U.S. 880 (1982); Midway Mfg, Co. v. Handai-America, Inc., 546 F. Supp. 125 (D.N.J.
1982). The videogame copyright cases, unlike the software copyright cases, lend themselves to idea/
expression separation by visual comparison. See generally Nimmer & Krauthaus, supra note 36, at
39-41.

102 See Knowles & Palmieri, supra note 81; at 128; Ninuner & Krauthaus, supra note 36, at 31;
see also Herbert Rosenthal Jewelry Corp. v. Kalpakian, 446 F.2d 738, 742 (9th Cir. 1971) (classifi-
cation into ideas and expression, at least in close cases, may simply state the court's desired result).
But see Sid & Marty Krofft Television Prods., Inc. v. McDonald's Corp., 562 F.2d 1157, 1163 n.6
(9th Cir. 1077) (noting that the idea-expression dichotomy has been criticized as being results-
oriented, affirming faith in the doctrine itself, and stating that the criticism may be alleviated by
courts "being more deliberate in their consideration of this issue").

See infra Part IV for a discussion of the idea-expression separation as it applies to programs.
LOS Knowles and Palmieri, supra note 81, at 126 (emphasis omitted).
" Nimmer & Krauthaus, supra note 36, at 31.
L".5 Id.; see Chafee, supra note 56, at 506-14.

Nimmer & Krauthaus, supra note 36, at 32.
lo7 Id.
108 See, e.g., Whelan Assocs. v, Jaslow Dental Laboratory, Inc., 797 F.2d 1222, 1229-31 (3d Cir.

1986), cert. denied, 107 S. Ct. 877 (1987); see also K. SALTMAN, supra note 2, at A-10—A-.11, A-62—A-
65 (noting a need to provide technical expertise to the judiciary).

1°9 	 of access plus substantial similarity raises an inference that the defendant used the
plaintiff's work. See supra Part 11 C.

816	 BOSTON COLLEGE LAW REVIEW	 [Vol. 29:803

ideas from the plaintiff's copyrighted work."'' To evaluate these contentions, judges and
lay factfinders must have some understanding of what programs do, how they are
developed, and how they can be copied.

A. The Nature of Computer Programs

The Copyright Act defines a computer program as "a set of statements or instruc-
tions to be used directly or indirectly in a computer in order to bring about a certain
result."'" Computers are very quick and accurate at executing steps that are time-
consuming and error-prone for humans. 12 A computer's circuitry, however, called a
processor or central processing unit (CPU), must be given very precise instructions as to
what to do, 15 in what order, and with what data."'

The instructions to a computer, or program, must be given to the computer in the
form of "machine language" notation." 5 Machine language is, however, difficult for

11° See supra Part II D for a discussion of the idea/expression dichotomy.
1 " 17 U.S.C, § 101 (1982). This definition is fairly close to standard technical definitions of the

term "program". Note, supra note 4, at 500 n.10.
"2 1 SON/A, CONCEPTUAL STRUCTURES: INFORMATION PROCESSING IN MIND AND MACHINE 27

(1984). Conversely, computers are not easily instructed to recognize patterns that are easily recog-
nized by humans — identification of races, for example. Id.

"is The processor or CPU is the "brain" of the computer. The CPU is usually located on one
microcircuit chip. Low-priced home computers were made possible by the development of micro-
processors. Prior to the advent of personal computers in the late 1970s, most computer users were
technically-trained people. REPORT, supra note 6, at 48.

As technology progresses, the line between hardware and software is disappearing. Today,
microcode often serves as a substitute for elements or a computer's hardware circuitry. Samuelson,
supra note 27, at 677. "Microcode" (also known as "firmware") defines what specific actions a
computer will take in response to a computer-readable instruction. Yoches, supra note 37, at 357.
The use of microcode allows a machine manufacturer or subsequent purchaser to change a primitive
function or the machine without disassembling and reconstructing the hardware. Samuelson, supra
note 27, at 677. Microcode is often called "firmware" because, though it is a program, it is considered
a more integral part of the machine than software. Id. "Firmware" refers to a program that has
been put into the computer's microcircuit chips by the manufacturer. The chips holding "firmware"
are called "Read Only Memory" (ROM). Memory chips which the computer's user can write on for
storage during program operation are called "Random Access Memory" (RAM). Note, supra note
6, at 415.

For more on the intellectual property protection afforded microcode, see Harris, Apple Computer,
Inc. v. Franklin Computer Corp. — Does a ROM a Computer Program Make, 24 JURIMETRICS 248 (1984)
[hereinafter Harris, ROM]; Harris, Legal Protection For Microcode and Beyond: A Discussion of the
Applicability of the Semiconductor Chip Protection Act and the Copyright Laws to Microcode, 6 COMPUTER

L.J. 187 (1985) [hereinafter Harris, Legal Protection for Microcode]; and Steinberg, NEC v. INTEL:
The Battle Over Copyright Protection for Microcode, 27 Juiumrritics 173 (1987). A microcode copyright
infringement case is pending (NEC Corp. v. Intel Corp., No. C-84-20799-WA1, N.D.Ca., San Jose
Div.). The Semiconductor Chip Protection Act of 1984 (SCPA), 17 U.S.C. § 901-14 (Supp. 11 1984),
gives owners of "mask works" the exclusive right to reproduce the mask work and to import or
distribute a semiconductor chip product in which the mask work is embodied. 17 U.S.C. § 905
(Supp. II 1984). The SCPA's protection more closely resembles copyright than patent. Harris, Legal
Protection for Microcode, .supra, at 202.

1 " "Data" are representations of information either known at the start of a program's execution
or obtained during the execution. Yoches, supra note 37, at 356.

15 A computer may be described as essentially a series of switches, each with two positions, on
or off. The computer's numbering system is binary, or "base two", reflecting the fact that a switch
can only be on or off. C. METCALF & M. SUGIYAMA, COMPUTER BEGINNER'S GUIDE TO MACHINE

LANGUAGE ON THE IBM PC & PC. pi. 5 (1985).

September 1988]	 COPYRIGHTED SOFTWARE	 817

humans to comprehend.' IC' Generally, instead of writing machine language instructions

that the processor can execute directly, programmers write programs in a programming

language, which then is translated mechanically to machine language by a compiler

program. 17 Compiler's make it possible for a programmer to write at a level commen-

surate with the capabilities of human expression, in a "high-level" language that uses

simple English-like statements.'" High-level languages are usually easier for novice

programmers to learn than are the "low-level" languages that require that the program-

mer's approach to a problem more closely resemble the computer's functioning. 119 These

high-level languages have their own syntactic and semantic rules, just as English does.

Some programmers write in assembly languages rather than in high-level program-

ming languages. Assembly language is a form of machine code that humans can read.

A programmer who writes a program in assembly language must approach the problem-

solving task in the same systematic fashion that the computer will use. A program written

in assembly language is converted into machine code by an assembler program. Assembly

language programs generally run faster than higher-level language programs.'"

Programs written in either high-level programming language or assembly language

are called "source code" programs."' The machine-language version of a program is

referred to as an "object code" program. 122 Although programs are generally written in

source code, mass-marketed programs are generally licensed 123 or sold only in object

code form in order to protect trade secrets and make imitation and unauthorizei

" 6 Yoches, supra note 37, at 356. For examples of machine language programs, see C. METCALF

& M. SUGIYAMA, supra note 115, at 311-61.

" 7 A compiler is a complex program that converts a program expressed in more or less human

logic by a program designer into machine logic. The conversion can also be done by an interpreter

program as the program is being run. Grogan, Decompitation and Disassembly: Undoing Software

Protection, 1985 COMPUTER LAW ANNUAL at 15-16.

II" Two "high-level" languages in common use are BASIC and FORTRAN.

119 Grogan, supra nose 117, at 15. For more on high level languages, see Ledsinger, Copyright
Protection of Object Code Computer Programs: Can Courts Determine Copying, 9 COMM/ENT L.J. 255,

258 (1987); Yoches, supra note 37, at 356.

1 " Grogan, supra note 117, at 17. A recent ad by Microsoft for its Macro Assembler Version

5.0 starts with the statement "[y]ou probably already know that assembly language subroutines are

the smartest way to get the fastest programs." PC MAGAZINE, Oct. 13, 1987 (back cover).

121 Ledsinger, supra note 119, at 258.

122 Yoches, supra note 37, at 356. Compilers and interpreters translate high-level source code

to object code, whereas assemblers translate assembly language programs to object code. Id. at 356-

57.
123 A license is a grant of use rights. Many programs are licensed rather than sold in order to

avoid the loss of product control that results from the "first sale" doctrine of copyright law. See 17

U.S.C. § 109 (1982). Under the "first sale" doctrine, the owner of a copyrighted item (a book, a

diskette) has the right to transfer ownership or possession of that item, T. SMEDINGHOFF, supra note

36, at 55. If a software distributor wants to impose restrictions on product use and transfer to

protect trade secrets, the distributor will license the use of the software subject to termination on

breach of a restriction by the licensee. See id. at 55-56, 76-77, 83, 85-86, 166-68. A sample license

agreement appears in Smeclinghoff at 362-68. For additional sample clauses, see AMERICAN PATENT

LAW Assoc. CONTINUING LEGAL EDUCATION INSTITUTE ON THE LAW OF COMPUTER-RELATED TECH-

NOLOGY, COMPENDIUM OF PACKAGED SOFTWARE LICENSING PROVISIONS (1984).

Distributors of mass-marketed software often put "shrink wrap licenses" on packages of the

product. Such a "license" generally states that the distributor has imposed certain restrictions on

the use of software, restrictions which the "licensee" (buyer) accepts by the act of opening the

package. These licenses may be unenforceable. T. SMEDINGHOFF, supra note 36, at 168-69.

818	 BOSTON COLLEGE LAW REVIEW	 [Vol. 29:803

modifications more difficult. 121 Machine-readable object code, incomprehensible to peo-
ple,'" consists of a string of ones and zeros, which are the only two symbols a digital
computer can understand. Although a disassembler can assist in deciphering a program
from its object code, a disassembler only roughly translates the object code into assembly
code, not into the higher level language in which the program most likely was written. 126

Personal computers generally are sold with operating systems programs already in
place. Operating systems programs are fundamental programs that manage the internal
flow of data within the computer, coordinate the functioning of the hardware, and allow
the user to use the task-specific programs known as applications programs.'" Operating
systems software often is placed on semi-conductor chips C'ROMs") and installed directly
into the computer's circuitry.'" The user adds applications programs to perform such
specific tasks as word processing, accounting, or game-playing,'" The operating systems
program enables the computer to execute application programs and to access systems
resources so an operating systems program must be used with an applications program.'"
Applications programs are written for use with a specific operating systems program.'"
Because there is no industry-wide standard on the configuration of operating systems
programs, applications programs written for use with one operating systems package
generally will not run on computers using other operating systems programs.L 32 Another
manufacturer's personal computers are "IBM PC-compatible," for example, if those

124 Grogan, supra note 117, at 5; Note, supra note 4, at 501-02. Object code also runs more
efficiently on the user's computer. It need not go through the intermediate step of compilation or
assembly. Note, supra note 4, at 501.

123 Grogan, supra note 117, at 7.
126 Id. at 18-21.
1 " Grogan & Kump, The Broader Meanings of Apple v. Franklin in the Development of Compatible

Operating Systems and In Determining Standards for Injunctive Relief, 1985 COMPUTER LAW ANNUAL at
106-07, Examples of operating systems programs are Data General's RDOS, IBM's PC-DOS, and
Microsoft's MS-DOS.

Microcode, discussed supra note 113, like operating systems programs, controls the internal
functioning of the computer and enables the user to run applications programs. Microcode, how-
ever, directs the primitive functions of the computer while the operating systems program directs
the relationship between the hardware and the application programs. Samuelson, supra note 27, at
678. For example, IB M's "B 10S" (Basic Input/Output Systems), an assembly language program that
is part of the operating systems software used in IBM PCs, is designed to "provide an operational
interface to the system and relieve the programmer of the concern about the characteristics of
hardware devices." Davis, IBM PC Software & Hardware Compatibility, 1985 COMPUTER LAW ANNUAL
at 123 (quoting the IBM Technical Manual).

1 " Ledsinger, supra note 119, at 259. An operating systems program might handle tasks such
as creating the video display, checking the keyboard to see which keys are being hit, and storing
programs. Note, supra note 6, at 414.

29 Grogan & Kump, supra note 127, at 107. Videogames are computer programs with intricate
screen displays for user play or interaction.

13 " Note, supra note 4, at 502. In the early days of computers, computers were task-specific. A
computer was "hard-wired" for a particular function. The only way to change the function was to
change the wiring. The development of a computer that would store encoded instructions ("pro-
grams") applicable to particular tasks eliminated the necessity of making hardware changes and the
necessity of having different machines for different jobs. The first commercial programmable
computer was manufactured in 1951. Samuelson, supra note 27, at 673-74 & nn.33, 34, 35.

1 " Grogan & Kump, supra note 127, at 107.
132 Id.

September 1988]	 COPYRIGHTED SOFTWARE	 819

computers can run, without modifications, applications software designed to run on IBM

PCs. ass

B. The Design of Programs

No one should attempt to separate a computer program into ideas and expressions

without understanding how computer programs are designed."' In order to analyze

software copyright problems, courts should have an understanding of the process by

which a programmer arrives at the actual programming language version of a program.

Courts need not, of course, have the level of knowledge necessary to actually design and

code a program.

The beginning point in software design is identifying the problem to be solved.

Computers tackle such problems as "check word spellings for correctness," "assist in

checkbook balancing," and "handle payroll."'" The culmination of software design is

the creation of a programming language set of instructions to the computer using

algorithms, which are similar to recipes. Algorithms specify explicitly and without am-

biguities the steps the computer is to carry out on data to reach solutions.'" The

"'Many applications programs already have been written for the popular IBM PC and Apple

l'Cs. Manufacturers of other PCs generally want their computers to have the capability of using

the applications software written for the IBM and Apple computers. The competitive machines'

operating systems software must, if compatibility is to be achieved, mimic the functions provided

by IBM's copyrighted operating systems software. Davis, supra note 127, at 123.

It is possible to subdivide programs into further classifications — custom-designed versus mass-

marketed, or q ain-frame versus microcomputer. The focus of the creator's major development

effort will vary depending on the program's ultimate purpose. In the large computer market, for

example, the major effort will be the development of the mathematical process used in the program.

By contrast, vidcogame programs use well-known algorithms and will succeed only if the end user

finds the program easy to use and fun. Keplinger, supra note 4, at 486-87.

134 Cf. Reback & Siegel, Toward a Comprehensive Test for Software Copyright Infringement, 1985

COMPUTER Law ANNUAL at 139, 145-46 (stating that the widespread use of top-down design,

discussed infra, for programs facilitates the use of the Hand-Chafee-Nimmer "levels of abstraction"

analysis, discussed supra in section II D).
The word "design" is more appropriate here than the word "written", for reasons discussed

infra in this section. Briefly, the actual writing of program code in high-level or assembly language

is only a small part of the process of creating a program to solve a particular problem. Computer

industry writers use the word "design". E.g., S. ALAGIC & M. Amu, supra note l; B. LIFFICK, THE

SOFTWARE DEVELOPER'S SOURCEROOK (1985); I. SOMMERVILLE, SOFTWARE ENGINEERING (1985). Soft-

ware "engineering" is concerned with building software systems that are larger than would be

tackled by an individual and involves the use of engineering principles. SOMMERVILLE, supra, at I-

2. The term "software engineering" was introduced in the late 1960s at a conference on the "software

crisis." The "crisis" was the realization that "third-generation" computer hardware made "heretofore

unrealizable applications a feasible proposition." Id. at 1.
115 The "problem identification" will, most likely, be stated only very broadly by the client, the

future user of the program, thus requiring extensive detail-level problem identification before a

program or programs are designed. Prior to actual program design, a systems analyst may determine

how the existing system works and prescribe a computerized replacement. B. LIFFICK, supra note

134, at 2-6,

"" S. ALAG1C & M. AMUR, supra note I, at I. A more technical definition provides that an

algorithm consists of a number of actions to be performed on data in a specified order, with possible

repetitions, under stated conditions. Id.
Program coding is not really the end point of the design process. Documentation (user's manuals

820	 BOSTON COLLEGE LAW REVIEW	 [Vol. 29:803

underlying algorithms for a "spell check" program, for example, instruct the computer
to compare words in a user-prepared document against words in a dictionary residing
in the program's memory. If a word matches a dictionary word, the program deems it
correctly spelled)" If the document word does not match a dictionary word, the program
displays the document word on the user's screen so that the user can judge the word's
correctness in spelling."

Experts agree that software design is a creative process that programmers learn
more through practice than from books, a process that cannot be formulated as a set of
rules.''" The end product, the program, is generally the result of numerous conscious
choices by the programmer.' 4° Though in the past, programmers often designed software
through an ad hoc process characterized by hasty informal pre-coding development'
and by attempts to formulate algorithms directly into a programming language. 142 Ex-

perts now recommend a more structured approach to program design.' 43 Formerly,
programmers would analyze a problem, draw a flow chart of the steps involved in the
problem's solution, and then go directly to writing code. Today, however, experts con-
sider flowcharts to be inadequate vehicles for expressing the design of a system.'" The
current trend is for a programmer to fully formulate the program's algorithms without
worrying about the constraints of the particular programming language in which the
program will ultimately be coded.'" Ideally, the programmer should develop the details
of the program's logic flow before actually beginning to code. 146

and instructional material for future programmers working with the program) must be prepared.

Frequently, software designers prepare documentation after the program itself has been coded. See
B. LIFFICK, supra note 134, at 9. Maintenance (debugging, modifications to fit user needs) is required

after a program is made available to users. See id. at 9-10; I. SOMMERVILLE., supra note 134, at 2-3.

The software must be tested, and, if what is being designed is a system of programs, the integrated

system tested before the system is made available to the user. 1. SOMMERVILLE, supra note 134, at 3.

I" 1. SOMMERVILLE, supra note 134, at 43. The "spell check" function will not pickup mistakes

in semantics. If, for example, the user mistakenly uses the phrase "typing arrangement" instead of

"tying arrangement", the semantically incorrect word "typing" will match a memory dictionary

word. One writer has described spelling programs as "a vain attempt to impose the clarity and logic

of machine language on the disorder and ambiguities of human language." Mendelson, Clonkers
and Coolitude: Spelling Checkers Get Better, PC MAGAZINE, Oct. 13, 1987, at 349.

im 1. SOMMERVILLE, supra note 134, at 72.

139 See, e.g., id. at 79.

145 Sommerville distinguishes between well-designed systems that solve the problem and badly-

designed systems. A well-designed system is straightforward to implement and maintain, easily

understood and reliable. In contrast, although a badly designed system may work, it is unreliable,

expensive to maintain, and difficult to test. Id. at 67.

In designing the user interface of the program, the designer must consider, inter alio, the

characteristics of humans, users of the program. See B. UPTICK, supra note 134, at 188-223.

" I 1. SOMMERVILLE, supra note 134, at 67.

142 S. ALAGIC & M. ARUM, supra note I, at 1.

"'See, e.g., S. ALAGIC & M. ARBIR, SUpra I101e 1; B. LIFFICH, supra note 134; I. SOMMERVILLE,

Supra note 134.

144 SOMMERVILLE, SUpra note 134, at 67.

145 S. ALAGIC & M. ARUM, 5Upra note 1, at 1; B. LIFFICK, SUpra rime 134, at 64-67; I. SOMMER-

VILLE, supra note 134, at 75-76, 106.

146 B. LIFFICK, supra note 134, at 66. There are several reasons for favoring language-indepen-

dent program design: (1) programming languages possess characteristics that do not always lead to

desirable programs; (2) the correctness of the solution can be judged better by demonstrating that

the logic in a program is correct than by executing lines of code on various data; (3) the design of

September 1988]	 COPYRIGHTED SOFTWARE	 821

A programmer begins designing a program to handle a particular task by studying
the over-all problem to be tackled, just as an attorney has an initial conference with a
new client to begin to explore the client's legal needs. The programmer then, 'according
to the tenets of the most popular design methodology, "top-down design," breaks the
over-all problem into subproblems."' Top-down design requires the program's designer
to "decompose the over-all problem into precisely specified subproblems, and prove that
if each subproblem is solved correctly, and these solutions are fitted together in a specified
way, then the original problem will be solved correctly." 148 The "top" of the design is the
general description of the over-all problem. Levels of detail are successively added below
this top level. Each lower level of design is another step of refinement, and the process
terminates when adding further detail would. require the writing of programming lan-
guage code. 149

The top-down design principle should not be alien to lawyers and judges, for
attorneys and judges irk effect apply top-down design principles to legal problems. An
attorney breaks a client's over-all legal ;problem into precisely specified subproblems,
then breaks down each subproblem further until reaching a detailed solution to the
client's problem. Suppose, for example, that the client is a start-up software developer
seeking legal help for, the first time. The over-all problem requiring the atto'rney's
attention — providing adequate legal representation — is actually a number. of sub-.
problems which the attorney must, at the outset, identify. Examples of such subproblems
include consideration of the optimal business form; review of any contracts already
signed; advice on future contracts or negotiation-stage contracts; advice on matters
concerning employees; advice on relationships with competitors; design of an intellectual
property protection plan; and tax planning. The attorney, having subdivided the over-
all problem, "provide adequate legal representation," into subproblems, must then de-
compose each subproblem into many smaller subproblems. The subproblem "design an
intellectual property protection system," for example, requires the attorney to consider
what copyright protection, trademark protection, patent protection, and trade secret
protection might be available to the client. The attorney then must consider each of
these possible avenues of intellectual property protection at a detailed implementation
level, explain the options to the client, and implement them through such steps as filing
registration forms, affixing notices to the product, and drafting confidentiality agree-
ments.

a program usually requires many drafts, and it is easier to change and edit the design before the
design is implemented at the level of detail required for coding; and (4) once the design has been
completed, the design can be coded into one or several programming languages. S. ALAGIC & M.
AEBIB, supra note 1, at 2; B. LIFFICK, supra note 134, at 65-66.

"7 I. SOMMERVILLE, supra note 134, at 69; Reback & Siegel, supra note 134, at 146. S. ALAGIC
Sc M. ARMIN, supra note 1, is devoted in its entirety to the principles of top-down design, as are two
earlier works, L. L. CONSTANTINE & E. YOURDON, STRUCTURED DESIGN (1979) and E. YOURDON,
MANAGING '11W STRUCTURED TECHNIQUES (1979). Sommerville describes two other design metho-
dologies, data-driven design (used mostly in relatively small data processing projects) and object-
oriented design. I. SiDMMERVILLE., supra note 134, at 69.

148 S. ALAGIC & M. ARRIR, supra note 1, at 2. Top-down design also is called "stepwise refine-
ment", indicating that there will be many rounds of approaching the problem, breaking it down
into further details (a step of refinement), and then doing that again. B. LI•FICK, supra note 134,
at 31.

14° /d. at 31.

822	 BOSTON COLLEGE LAW REVIEW	 [Vol. 29:803

Litigators and judges also use top-down design principles. Take, for example, the
attorney seeking a preliminary injunction for a copyright owner against the distributor
of an allegedly infringing work. To solve the over-all problem, "get a preliminary
injunction," the attorney must first identify what he or she is required to show. The
attorney must break down each requirement into further subproblems. One subproblem,
for example, is determining what suffices in a copyright case to establish likelihood of
success on the merits. Beyond that, once the attorney has some case law indicating what,
in a copyright case, establishes likelihood of success on the merits, the attorney must
consider the facts of the particular case and apply the facts to determine the likelihood
of succeeding on the merits. The judge in the preliminary injunction case will engage
in his or her own top-down problem-solving by asking himself or herself a series of
increasingly focused questions: (I) What is the nature of this motion? (2) What is the
nature of the underlying cause of action? (3) What must a plaintiff show to get a
preliminary injunction? (4) As to each of the elements of a preliminary injunction, what
generally is sufficient in a copyright case? and (5) What has the plaintiff presented and
how did the defendant respond?' 5 °

Programmers following top-down design principles solve problems by using the
fundamental human problem-solving facility, abstraction;' 51 so do attorneys. Abstraction
is the process of considering an idea as an abstract entity without considering the details
of how that entity actually is realized.' 52 The programmer designing a spell-check pro-
gram will identify the fundamental operations needed, such as split the document into
words, sort the words, and compare the words with the program dictionary's words.
Then the programmer will refine each component operation into its fundamental op-
erations. The attorney's end product may include letters to the client, copyright and
trademark registration forms, letters to third parties, contracts, and memos to the attor-
ney's client file. The programmer's end product will be a program and documentation.
Just as the attorney will produce much paper between the intake stage and the resolution
of the client's over-all problem, the program designer will produce a series of increas-
ingly-detailed abstractions in going from the identification of the gross features of the
solution to step-by-step instructions for the computer.'"

What these programmers create are instructions for the computer to follow. The
programs contain algorithms — recipes spelling out the steps to be carried out on
problem data to reach a correct solution.'" Selecting the algorithms used to solve sub-
problems is an important part of the program design process. People use algorithms to
perform many of their daily functions. Imagine, for example, explaining to a guest how
to make coffee in a home coffeemaker. The coffeemaking algorithm includes instructions
about where to put the water, how much water to use, where to find the coffee, where
to find the filters, where the filter goes in the coffeemaker, where the coffee goes, how
much coffee is needed, and what buttons to push.'" Computers, lacking human intuition,

' 3° These questions are loosely drawn from Plains Cotton Coop. Assoc. v. Goodpasture Com-
puter Serv., Inc., 807 F.2d 1256 (5th Cir.), cert. denied, 108 S. Ct. 80 (1987).

' 3, I. SOMMERVILLE, supra note 134, at 79.
I" Id,
1" Id. at 80.
1" S. ALAGIC & M. ARB113, supra note 1, at 1.
J ' 5 A recipe for food preparation is another example of an algorithm. B. LIFFICK, supra note

134, at 82.

September 19881	 COPYRIGHTED SOFTWARE	 823

must be given very precise instructions as to what to do when and on what data to do
it. Because a computer can only follow algorithms expressed in some programming
language, the final level of' abstraction in the design stage must be coding the chosen
algorithms in the chosen programming language. 15" Although the actual coding requires
care, the major intellectual effort involved in program design is in the development of
sufliciently.detailed algorithms, not in the coding. 157

The actual code version of the prOgram usually is divided into sections called
modules. A module performs exactly one function,'" such as splitting the user's docu-
ment into words. The programmer generally defines the modules at the preliminary
design stage, 159 just as an attorney might outline the issues to be addressed in a brief.
Ideally, modules are independent of one another, so that a change or mistake in one
module will not affect another module's functioning. 1 "" Any subfunction used repeatedly
by the overall program will be placed in a subroutine, which is a section of code that
performs a certain subfunction and handles that suhfunction without further inquiry as

to the details.
The actual code version of a program will reflect the peculiarities of the chosen

programming language. Code looks peculiar to those who are unfamiliar with program-
ming language. Suppose, for example, that one wants to instruct an Apple II computer
to clear the screen and print the words "This is a Test." The instructions in the BASIC
programming language to accomplish that goal look like this:

5 HOME
10 PRINT "THIS IS A TEST"'" 1

The source code for this task also could be programmed in assembly language, which
would require many more lines of code resembling ordinary English even less than does

the BASIC code. 162 The machine code version of the program, which the computer's
compiler, interpreter, or assembler procittces from the source code, would require even
more lines of instruction because a number of machine instructions are generated for
each source code instruCtion.""fbe binary code that the computer actually uses consists
of ones and zeros, representing the electronic impulses, "on" and "off," that the computer
can read.'"4

' 5" See S. ALAGIC & M. ARBIB, supra note 1, at 12.
" 7 Id. Algorithms chosen should be efficient as well as functionally correct. Id. at 14.
"8 B,	 supra note 134, at 29.
'gc Id.
166 Id. at 30. Much has been written about the process of writing or coding an actual program

from the finished design. Some of the advice is language-independent, applicable regardless of the
actual programming language being used — for example, the following suggestions . for making
programs more easily readable by humans: (1) Make a program more readable by naming program
objects — constants, variables, procedures, and functions — with names that bring to mind the
real-word entities being represented; (2) make a program inore readable through careful design of
layout — use of blank lines, indentation, word highlighting, and consistent paragraphing; and (3)
limit module size to the number of lines that will be fit on two pages of source code listing. B.
LwrIctt, supra note 134, at 129, 137; 1. SOMMERVILLE, supra note 134, at 112-18.

T. HARRIS, THE LEGAL GUIDE TO COMPUTER SOFTWARE PROTECTION: A PRACTICAL HANDBOOK

ON COPYRIGHTS, TRADEMARKS, PUBLISHING, AND TRADE SECRETS 51-52 (1985).
162 See id. at 53 for the assembly language version.
163 I. SOMMERVILLE, Slipia note 139, at 144
Ica 	 HARRIS, supra note 161, at 55. A hexidecimal version of the binary code is actually made

first within the computer. Id. at 54.

824	 BOSTON COLLEGE LAW REVIEW	 [Vol. 29:803

C. How Programs Are Copied

Software is easily duplicated mechanically. Because most operating systems allow
users to copy a program from one storage device to another in a matter of seconds, it
is easy to take a disk containing a program and duplicate the program onto another
disk. 165 Only a few software distributors take measures to "copy protect" their pro-
grams, 1 €6 and the ease with which software may be copied contrasts sharply with the
difficulty and cost of developing software. 167 The software duplicators may have several
different motives in duplicating the literal code of a program. The duplicator may desire
to "get something for nothing" for personal use, desire to create copies to sell, or desire
to create a computer that is fully compatible with some competing model. 168

The more sophisticated software bootlegger may try to make his or her program
look different from the copied program by changing variable names or changing the
order of modules or subroutines. Also, a bootlegger can use a compiler or assembler to
mechanically translate source code into object code. 169 Although mass-marketed pro-
grams rarely are distributed in source code form, a pirate could duplicate, compile, and
sell in object code form a program originally distributed in source code. The pirate's
program would not look like the copyrighted program, but it would still be a "copy" of
the copyrighted program.

Present-day software copyright law is concerned not just with the outright duplicator,
but also with the defendant who, without the copyright holder's authorization, created
a clone of a copyright-protected program for a line of computers other than the com-
pUters for which the original program was designed. While the plaintiffs in the "first
generation" software copyright cases alleged that the defendants mechanically duplicated
a program's literal code, in the recent cases plaintiffs have claimed that the defendant
copied the plaintiff's program's organization and structure to create a functionally-

' 65 This duplication is much like the duplication of recordings with audio-taping equipment —
a recording device does the work. Nimmer Krauthaus, supra note 36, at 22. For more detail on
mechanical duplication, see Samuelson, supra note 27, at 689-90. This mechanical duplication is a
concern for software distributors on two levels: (I) small-scale copying for the use of friends who
would otherwise have to buy their own copy; and (2) large-scale commercial copying, much of it
done outside of the U.S. and brought here for sale in competition with the legitimate product. If
a work has been duplicated in quantity in another country without the copyright owner's authori-
zation, the copyright owner may be able to have the work excluded from this country under the
Customs Act. See 19 U.S.C. § 1337 (1982). A copyright owner may also record the work with the
U.S. Customs Service, which, upon spotting infringing works, will impound them. 19 C.F.R. §§
133.21-133.24 (1987). See Blatt, Battling Foreign High Technology Counterfeits Through U.S. Customs
Enforcement, 1985 COMPUTER LAW ANNUAL at 93.

"6 See Saltzberg, Legal and Technical Protection Through Software Locks, 5 COMPUTER L.J. 163
(1984) for a discussion of copy protection devices.

157 See Yoches, supra note 37, at 357. Although hardware costs have fallen with the development
of new technologies, software costs have not dropped. I SOMMERVILLE, supra note 134, at 1.

1 " Compatibility with a particular well-known computer model can be achieved only by using
an operating systems program that mimics the functions provided by the well-known model's
operating systems program. The defendants in two infringement suits brought by Apple contended
that they had to duplicate Apple's operating systems programs to achieve compatibility. See Apple
Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240 (3d Cir. 1983), cert. dismissed, 464 U.S.
1033 (1984); Apple Computer, Inc. v. Formula Int'l, Inc., 562 F. Supp. 775 (C.D. Cal. 1983), aff 'd,
725 F.2d 521 (9th Cir. 1984). See infra Part IV for a discussion of Franklin Computer.

169 See T. HARRIS, supra note 161, at 53-54 (noting that in such a case it would seem possible
to show copying even if the original program was in BASIC and the copy in assembly language).

'September 19881	 COPYRIGHTED SOFTWARE	 825

similar program in a different programming language. In the recent case Whelan Asso-

ciates v. Jaslow Dental Lahoratory, Inc., for example, the plaintiff's program ran on IBM
computers, which required application programs written in Event Driven Language

(EDP.'" The Whelan defendants created a program that would perform the same
functions for the personal computers that use BASIC language application programs."'

The authors of two recent articles contend that, although legal restraints against
unauthorized commercial reproduction and sale of software are appropriate, translations
and other adaptations may benefit society by expanding the availability of technology,
and that copyright law should not deter these efforts.'" Generally, only the object code
of the target program will be available, so the unauthorized translation or conversion
must be done by "reverse engineering," a process involving the conversion of the original
program's object code into a human-readable form that reveals the logic and structure

of the original program. L73 The pirate can convert the object code into human-readable

assembly language using a decompiler or disassembler. 174 The "reverse engineer" then

must make many trial and error guesses about what was in the original high-level
program, based on recognition of recurring patterns in the assembly language pro-
gram.'" Disassembling a complex program could take man-months or man-years.'" A
compiled program is likely to be even more difficult and time-consuming to reverse
engineer than an assembled program.'" Even if the original program's source code is
available to the pirate, the pirate must expend effort to convert the program to a new
programming language. Presently, translations from one high-level programming lan-
guage to another cannot be done mechanically. There are additional difficulties in
copying applications programs, because they originally are written for use with particular
operating systems programs. A mechanically-translated applications program will not
run on a computer using a different operating systems program from that used by the
computer for which the original applications program was written. The pirate must. not
only create instructions in the new programming language, he or she must adapt the
new program to the operating systems software, firmware, and hardware of the new
computer.' 78 Thus, preparing a translation of a program, whether the translator works
from source code or object code, requires considerable effort on the part of the translator.

' 70 797 F.2d 1222,1226 (3d Cir. 1986), cert. denied, 107 S. Ct. 877 (1987).
,71 Id.
172 Karjala, supra note 36, at 54-59, 73-88; Nimmer & Krauthaus, supra note 36, at 36-62.

' 75 "Reverse engineering," stated more generally, is the process of starting with a known product
and working backward. Kewanee Oil Co. v. Bicron Curp., 416 U.S. 470,476 (1974). See Grogan,
supra note 117, at 12. Reverse engineering is common in many industries. Id. For a defense of

reverse engineering of software, see Laurie & Everett, Protection of Trade Secrets In Object Form

Software. The Case for Reverse Engineering, 1985 COMPUTER LAW ANNUAL, at 33-57.

' 74 Grogan, supra note 117, at 17-21. .
175 Id. at 18-19. See generally Karjala, supra note 36, at 39-41 for a discussion of reverse

engineering.
176 Grogan, supra note 117, at 18-19.
1" Id. at 19-21. It is unclear, at present, whether an infringing program produced through

reverse engineering is a copy or a derivative work of the original program. A copy of the original
program will, most likely, be made in the process of the reverse engineering. Id. at 25-26. This
copying alone is an infringement of the copyright owner's exclusive rights. On the question of
whether section 117 of the Copyright Act might authorize such copying, see id. at 28-30. See
generally Conley & Bryan, supra note 36, at 599-602.

178 See Samuelson, supra note 27, at 688. Nimmer and Krauthaus distinguish "value-added use"

826	 BOSTON COI I PGE LAW REVIEW 	 [Vol 29:803

IV. DISTINGUISHING A COMPUTER PROGRAM'S IDEAS PROM ITS EXPRESSION

A. The Two Principles

In the 1970s Congress and the Commission on the New Technological Uses of
Copyrighted Works (CONTU)"9 included computer programs in the category of works
that contain expression that may be protected without granting a monopoly on under-
lying methods or ideas. A 1976 House of Representatives committee report explained
the applicability to computer programs of Section 102(b) 180 of the 1976 Copyright Act,
which codified the rule that copyright protection does not extend to ideas. The committee
report stated that Section 102(b) would clarify that a computer programmer's expression
is a copyrightable element of a computer program, but that the actual processes or
methods embodied within the program are outside the scope of copyright law. 181 A few
years later CONTU stated that the copyright statute should "make it explicit that com-
puter programs, to the extent that they embody an author's original creation, are proper
subject matter of copyright." 182 By 1983 the Copyright Office had issued a circular stating
that "[cjopyright protection extends to the literary or textual expression contained in
the computer program... 183

The software copyright case in which the defendant has duplicated the plaintiff's
program code in its entirety is relatively simple, in legal terms. Early software copyright
cases were of this variety.'" In such cases it is easy to conclude that the defendant took
protected expression from the plaintiff's program. One who copies "the whole thing"
copies the expression; literal similarity is always expressive similarity. 183 When the copy-

from piracy. Nimmer	 Krauthaus, supra note 36, at 29. They define value-added use as use
occurring when a second party uses the initial work as a basis but makes substantial modifications
to create a new product, Id. at 30. Additionally, Karjala takes the position that courts should abandon
the idea/expression distinction in software copyright cases and instead go directly to the policy
question of whether what the defendant did was (a) reverse engineering for the purpose of
improvement (lawful, in Karjala's view); or (b) socially undesirable piracy. Karjala, supra note 36, at
58.
. 179 See supra note 33 for a discussion of CONTU's role in copyright legislation.

1 " Section 102(b) of Title 17 states as follows: "In no case does copyright protection for an
original work of authorship extend to any idea, procedure, process, system, method of operation,
concept, principle, or discovery, regardless of the form in which it is described, explained, illustrated,
or embodied in such work." 17 U.S.C. § 102(b) (1982).

"' H.R. REP. No. 1476, supra note 29, at 5670 (emphasis added). See generally 1 M. Nimmut,

supra note 5, § 2.03[D].
' 52 CONTU Report, supra note 33, at 2.
' 53 Copyright Office's Circular R61 (May, 1983) (quoted in Whelan Assocs. v. Jastow Dental

Laboratory, Inc., 797 F.2d 1222, 1242 n.38 (3d Cir. 1986), cert. denied, 107 S. Ct. 877 (1987)).
84 See, e.g., Apple Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240 (3d Cir. 1983),

cert. dismissed, 464 U.S. 1033 (1984). In Franklin the defendant acknowledged that it had duplicated
the plaintiff's software but maintained that the software was not protected by copyright. See id. at
1244. Later "outright duplication" cases include M. Kramer Mfg. Co. v. Andrews, 783 F.2d 421
(4th Cir. 1986); and Midway Mfg. Co. v. Strohon, 564 F. Supp. 741 (N.D. IR. 1983).

"5 3 M. NINIMER, supra note 5, § 13.03[AI at 13-35. See supra note 66 and accompanying text.
Even literal copying is not, however, necessarily infringement. First, if the idea and expression

have merged, the copyist is free to take even the expression. See supra notes 82-89 and accompanying
text. Furthermore, if the plaintiff's work was copied by the plaintiff rather than original to the
plaintiff, the copyright is invalid. See Synercom Technology, Inc. v. University Computer Co., 462
F. Supp. 1003, 1009-10 (N.D. Tex. 1978). The originality required for copyright exists, however,

September 1988]	 COPYRIGHTED SOFTWARE	 827

right defendant's program is not a verbatim copy of the plaintiff's work, determining
whether the programs' similarities are idea-level or expression-level similarities is more
difficult. Indeed, determining whether any similarities exist may be difficult; even source
code programs may look like gibberish to judges, lawyers, and jurors.m Additionally, a
programmer who works from a copyrighted program can easily make a new program
that looks different from the copied work.' 87 The copyist can make his program look
different from the plaintiff's by compiling the plaintiff's source code program into
object code,'" by using a different compiler from that used by the plaintiff, or by making
trivial changes in the original program. 189 The copyist could, for example, change vari-
able names, reorder modules or subroutines, and add or delete comments.'" Thus, the
similarities between the plaintiff's program and "new" work may not be obvious to the
factfinder. Furthermore, if the defendant has "translated" the plaintiff's program into
a different programming language, the two programs will not resemble each other at
all. Finally, if the defendant, in addition to translating the plaintiff's program into a new
programming language, has borrowed only some of the features of the plaintiff's work
and rejected others, the factfinder's job of determining whether there are not only
similarities but also substantial expression-level similarities between the two programs
becomes even more difficult.

The foreseeable difficulties involved in separating a program's unprotected ideas
from protected expression, an issue that has emerged only in the 1980s, already has
been the subject of extensive comment in the literature. A report of the Office of

Technology Assessment (OTA) 191 concludes that the federal courts eventually will face
a dilemma in software copyright cases. The report foresaw that the courts will either
limit the protected expression in a program to literal code duplication, or copyright
decisions inevitably will protect a "procedure, process, system, or method of operation"
in violation of Section 102(b).' 92 Another commentator, Karjala, questions whether courts
ever will he able to efficiently separate ideas from expression in programs, because
factlinders, who traditionally draw the line between ideas and expression, will need the
expensive help of experts to draw this line for programs.'" Karjala would eliminate the

if the author has introduced any element of novelty to previously created material. Id. at 1010.
Nimmer and Krauthaus note that accepted programming styles and known subroutines could
contribute to code similarity which, in their view, should not be actionable. Nitnmer & Krauthaus,
supra note 36, at 55.

'm The question of whether similarities arc similarities of idea or expression is a question of
fact. SAS Inst., Inc. v. S & Fl Computer Sys., Inc., 605 F. Supp. 816,829 (M.D. Tenn, 1985). Often,
however, judges have answered the question in copyright cases in a preliminary injunction context.
Accordingly, the software copyright cases analyzed infra Part IV B are either bench trials or
preliminary injunction orders.

187 OTA Report, supra note 5, at 82; Conley & Bryan, supra note 36, at 582; and Note, supra note
4, at 513.

188 Rarely, however, will the source code be available. See supra notes 123-24 and accompanying
text,

199 Conley & Bryan, supra note 36, at 582.
19" Comments are statements that are not compiled, because they aid the programmer, rather

than instruct die machine.
"" OTA Report, supra note 5, at 81. For a rebuttal, see Baumgarten & Meyer, Program Copyright

and the Office of Technology Assessment, 4 COMPUTER Law. No. 11,1 (1987).
tin OTA Report, supra note 5, at 81.
193 Karjala, supra note 36, at 55.

828	 BOSTON COP! FGE LAW REVIEW	 [Vol. 29:803

idea/expression analysis from software infringement cases, instead focusing the legal

analysis on whether the defendant's use- of the plaintiff's work conferred any substantial

commercial advantage on the defendant.'" Karjala reasons that if the defendant under-

took reverse engineering at a cost approximating the actual development costs that the. .

first developer did-not recover during his or her original monopoly period, the defendant

would not be able. unfairly to undercut the original developer's price for the work.' 95

Nimmer and Krauthaus contend if artistic expression is not at issue, that "only the most

proximate copying and virtually complete similarity should be actionable." 196 The authors

Conley and Bryan view the mere determination of similarities between two programs to

be difficult, if not impossible19 7 for lay factfinders, who will find difficult the determi-

nation of where the boundary between idea and expression lies.'" Conley and Bryan

would have the court focus on the defendant's conduct rather than the program alone

to,determine whether the defendant engaged in unauthorized copying. 199

Presently, however, courts are attempting to apply the idea/expression dichotomy to

programs200 on a case-by-case basis,. and some commentators support this approach.

Davidson maintains, that it is not really that difficult to distinguish between the ideas and

expression of software. 2" Professor Goldstein assumes that courts can make the sepa-

ration. in computer ,program copyright infringement cases, stating that courts should

hold the defendant-liable for literally copying the surface details of the plaintiff's work,

but should excuse the defendant who uses only functional elements of the plaintiff's

work:2°2 Several practitioners advocate using the traditional Hand-Niinmer abstractions

approachm to software, determining, for each case, at what level of a program's abstrac-

tions copyright protection should begin. 204

Courts could certainly avoid upcoming litigation difficulties by limiting copyright

infringement for software to literal code duplication. This approach would be out-of-

step, however, with pre-software copyright cases holding that two works need not be

literally identical to be substantially similar. 2° This criticism is not dispositive; some

commentators argue that software should be treated differently from traditional literary

' 94 Id. at 56.

195 Id. The competitor may, however, get a "free ride" by using the creator's advertising and

image-development.

Nimmer and Krauthaus, supra note 36, at 43. The authors approve the use of the idea-

expression distinction as applied to programs resembling fiction works, such as videogames. Id. at

41. Their position regarding organizational copying is that such copying should be infringement

"only if the duplicated structure encompasses the detail and entirety of the organization of a complex
work." Id. at 52 (emphasis in original).

LP' Conley & Bryan, supra note 36, at 582.

19U Id. at 587.

m./d. at 612-13.

250 See infra Part IV B.

2°1 Davidson, supra note 36, at 1082 & n.112.
202 Goldstein, supra note 36, at 1124.

201 See supra notes 75-81 and accompanying text for a discussion of the "abstractions" approach.

"4 Baumgarten & Meyer, supra note 191; Ladd &.Joseph, supra note 11; Reback & Hayes, The
Plains Truth: Program Structure, Input Formals, and Other Functional Works, 4 COMPUTER L. No. 3, I

(1987,); Reback & Siegel, supra note 134.
See, e.g., Sid & Marty Krofft Television Productions, Inc. v. McDonald's Corp., 562 F.2d

1157, 1167 (9th Cir. 1977); Sheldon v. Metro-Goldwyn Pictures Corp., 81 F.2d 49, 55 (2d Cir.

1936); Nichols v. Universal Pictures Corp., 45 F.2d 119, 121 (2d Cir. 1930). See generally 3 M.

NIMMEE, supra note 5, § 13.03[A], at 13-20 & n.9; supra notes 66-74 and accompanying text.

September 19881	 COPYRIGHTED SOFTWARE 	 829

works. Professor Karjala, for example, argues that the broad concept of "expression"
used in traditional literary works infringement cases is inappropriate for computer
programs because programs are technology, and copyright does not protect technology,

absent some special policy justification. 20G Accordingly, Karjala concludes that only pro-
gram copying not involving the time, effort, skill or expense of reverse engineering
should be actionable. 207 Similarly, Nimmer and Krauthaus assert that "liclonfusion results
when copyright standards are applied to value-added use of technology." 20° Furthermore,
copyright law, the authors of the OTA Report write, cannot successfully be applied to

computer programs, 2" because it is impossible to distinguish clearly between idea and
expression in a computer program by using traditional copyright analysis.")

It seems clear, though, that immaterial variations, such as changes easily made with
a text editor, should not get the defendant off the hook in a software infringement case
anymore than trivial changes get the defendant off the hook in a traditional literary

work infringement case.2 " In the literary work case, paraphrasing is tantamount to
copying." Just as trivial dialogue variations do not save a defendant who pirated a play,
trivial code variations should not allow a software copyright defendant to avoid a finding
of infringement. Moreover, if a plagiarist may violate the copyright on a play without
duplicating dialogue, 213 it would appear that a "clever copier" may violate the copyright
on a program without duplicating or even paraphrasing program code. In the literary
context, expression is not confined to the words of the protected work. Over forty years
ago Professor Chafee observed that expression lies somewhere between an author's ideas
and the mariner in which that author wrote those ideas down. 2 " This principle, applied
to computer programs, would hold that a program's protected expression should not be
limited to its literal code. 213

The commentators who doubt the appropriateness of applying to software the broad
concept of expression that is used in literary works infringement cases 2 ' 6 appear to agree
that the "clever copier" who makes only trivial changes in the code of a protected
program is an infringer. 2 " They object, however, to the idea that copyright protection
on a program should extend beyond protection against close paraphrasing of the code. 213

206 Karjala; supra note 36, at 48-50.
207 Id. at 54-57.
2118 Nimmer & Krauthaus, supra note 36, at 13,
2"P OTA Report, supra note 5, at 81.
210 Id. at 83.
Y 1 1 3 M. NIMMER, supra note 5, § 13.03[A), at 13-20.2 & n.9.

212 Davis v. E.1. DuPont de Nemours & Co., 240 F. Supp. 612, 621 (S.D.N.Y. 1965).

213 Sheldon v. Metro-Goldwyn Pictures Corp., 81 F.2d 49, 55 (2d Cir. 1936). See supra Part 11

214 Chafee, supra note 56, at 513. Chafee was concerned with the application of copyright to
motion pictures, the new technology of his tune.

213 Niminer and Krauthaus contend that there is a serious risk that extending copyright pro-
tection beyond a program's code may over-protect the first author, imposing substantial restraint
on future design and development. Nimmer & Krauthaus, supra note 36, at 48. The authors take
the position that the original programmer "arguably" should control some adaptive works based
on his work. Id, at 49.

21° See supra notes 206-10 and accompanying text.
217 See Karjala, supra note 36, at 40; Nimnier & Krauthaus, supra note 36, at 49.

212 See 07'A Report, supra note 5, at 81-85; Karjala, supra note 36, at 65, 75, 79; Nimmer &
Krauthaus, supra note 36, at 52, 56, 61.

D.

830	 BOSTON COLLEGE LAW REVIEW	 [Vol. 29:803

One argument against extending copyright protection beyond code duplication or close
paraphrasing is that there is nothing in a program like a novel's expression; a program
is not written with aesthetics or communication to a human in mind, it is written to
instruct a computer. 216 Copyright protection covers not just literary or "arty" works,
howeYer; it covers that which is deemed expression, whether in fact works, contest rules,
news reports, etc. 22" It is not surprising that it is impossible to define precisely "expres-
sion" for programs; 221 copyright law does not attempt to define the "expression" in any
category of protected works. Instead, the line between idea and expression is drawn on
an ad hoc basis. 222 The OTA Report statement that traditional copyright analysis is un-
helpful in distinguishing between idea and expression in a computer program 223 is
incorrect.224 Courts may apply to programs the same "level of abstraction" analysis that
they have, for years, used to draw the line between protected expression and unprotected
ideas in traditional literary works.

The program design cycle itself225 provides a strong basis for the position that
protected expression should not be limited to actual code. The actual code in which a
program is written is only the last step in the process of creating the work, 226 just as the
words in which a novel is written are the last step in the novel-writing process. if the
novelist's protected expression starts at a level more abstract than the words in his novel,
the program designer's protected expression should start at a level more abstract than
the final coding. Code and protected expression, then, are not synonymous. Accordingly,
a program's expression lies somewhere between the program designer's ideas for solving
the overall program problem and the code itself.

If courts extend copyright protection beyond a program's actual code, then courts
will have difficulty determining whether the defendant borrowed protected expression
or merely ideas from the plaintiff's work. A later programmer is free to use the ideas
and methods used in a copyright-protected program. He or she need not work in
ignorance of what has already been done.227 If courts extend copyright protection beyond
the literal code, there is a risk that they will protect ideas or methods, and thus over-
protect early works. To avoid this overprotection, it is necessary to recognize that all
programs contain many unprotected ideas.

219 Nimmer & Krauthaus, supra note 36, at 41.
220 See supra notes 93-101 and accompanying text.
221 See OTA Report, supra note 5, at 81.
222 See supra notes 76-81 and accompanying text.
222 	 Report, supra note 5, at 83.
224 Baumgarten & Meyer, supra note 191, at 3.
225 See supra Part III B.
226 See supra notes 139-57 and accompanying text.
Where, one might ask, is the expression in the object code version of a program? Davidson,

raising the question of "what is the legal relation between source and object code," concludes that
source code and object code contain the same expression. Davidson, supra note 38, at 700-01.

227 Nimmer & Krauthaus, supra note 36, at 38. One author has contended that progress in
programming requires plagiarization, since progress comes in stepping-stone steps. Comment, supra
note 50, at 1292. The Whelan court rejected that contention. Whelan Assocs. v. Jaslow Dental
Laboratory, Inc., 797 F.2d 1222,1238 (3d Cir. 1986), cert. denied, 107 S. Ct. 877 (1987).

Reback and Siegel apply the principle of the legality of taking a program's ideas to the problem
of creating an operating system program to achieve IBM PC compatibility. See Reback & Siegel,
supra note 134. Additionally, Davis offers suggestions for creating a non-infringing operating system
that will run the application programs designed for the IBM PC. Davis, supra note 127.

September 1988]	 COPYRIGHTED SOFTWARE 	 831

The observation that any program puts to work many unprotected ideas stems from
understanding how people design programs. 228 Programs are designed by stating the
overall problem and then identifying the underlying subproblems. The top-down design
principle requires a programmer to divide the complex problem into smaller, less com-
plex problems, and then to find a solution for each smaller problem. Next, the program-
mer must decompose each smaller problem down to its most specific, detailed form, the
actual code. 2 '29 The developer solves each smaller problem by putting an idea to work;
thus, a program must use many ideas to solve the overall program problem. 23° The
program's copyright protects none of the program's internal ideas.

Separating a program's internal ideas from its protected expression is difficult. The
separation process requires the factfinder to look inside both the plaintiff's program
and the defendant's program to determine and characterize what was taken by the
defendant. Where the defendant's program resembles the plaintiff's, it is tempting to
equate the unprotected ideas with overall program function, avoiding the necessity of
looking inside. The Third Circuit Court of Appeals made this mistake in Whelan Associates

v. faslow Laboratory, Inc. ; 251 the decision. has been criticized widely. 232 Limiting the unpro-
tected ideas to the program's overall function, the highest "level of abstraction," 235 over-
protects the copyright owner by giving copyright protection to the internal program
ideas. Copyright law, however, should reward the author of a work without giving the
author a monopoly on the ideas used in the work. If courts limit the unprotected ideas
to program function, everything in the program — all lower levels of abstraction — is
then protected expression, unavailable for use by subsequent developers of programs.
The Whelan court's error was not its decision to give copyright protection at a level of
abstraction higher than literal code. Instead, the Whelan court erred by failing to correctly
apply the necessary limiting principle, that ideas used in the program are riot protected.
If copyright protection for software extends beyond the literal code of a program,
factfinders must look inside the program for the unprotected ideas that accomplish the
overall program function. If the protected expression in a program extends beyond
literal code, unprotected ideas must be sought in the program at a level less abstract
than overall program function.

229 	 supra Part III B.
229 See supra Part III B.
2" A program designer starts with an abstract goal — "I want to design a program that will

check the spelling of words" — and then breaks the abstract goal into more concrete concepts
identifying subproblems. The programmer's mental processes concerning the desired spell-check
program might be something like this:

How do I use a computer to check the spelling of words in a user-created document?
I do that by getting the computer to break the document into words, then by getting
the computer to compare each document word with a memory dictionary word. I
need to tell the computer to display on the screen any document word that clues not
match a dictionary word,

Once the programmer has identified the subproblems — divide document, compare document
word with dictionary word, display non-matches — he or she will work with each subproblem until
he or she figures out exactly how to get the computer to solve that subproblem, and, ultimately,
the over all abstract goal of the program.

23 ' 797 F.2d 1222, 1236 (3d Cir. 1986), cert. denied, 107 S. Ct. 877 (1987).
2" See, e.g., Karjala, supra note 36; Ladd & Joseph, supra note 11; Reback and Hayes, supra

note 204.
235 See supra notes 77-81 and accompanying text.

832	 BOSTON COLLEGE LAW REVIEW	 [Vol. 29:803

In Section IV B of this article, two principles (1) don't confuse code with protected
expression, and (2) the necessary limitation on that principle, don't confuse overall
program function with the unprotected idea — are analyzed in the context of the
computer software idea/expression cases decided to date. The recent Third Circuit
decision, Whelan Associates v. Jaslow Denial Laboratory, Inc., ignored the second principle,
confusing the program function with the unprotected idea. 234 The Whelan court extended
copyright protection beyond literal code but then, instead of looking inside the plaintiff's
program for unprotected ideas, the court equated the unprotected idea with the overall
program function.235 The impact of the Whelan error is discussed in Section V of this
article.

13. The Software Copyright Infringement Cases: Separating Idea from Expression

The idea/expression dichotomy first was raised in the computer program context in
the 1978 case Synercom Technology v. University Computing C0.236 In Synercom, both the
plaintiff and the defendants marketed programs designed to help engineers perform
structural analysis calculations.237 The plaintiff did not allege that the defendants copied
the actual code of the plaintiff's program. Instead, the plaintiff alleged that the defen-
dants copied from the plaintiff's input formats the data input formats shown in defen-
dants' user's manual, in violation of the plaintiff's copyright rights. The plaintiff pro-
vided its program users with input format cards, which guided the user in the
arrangement and organization of data. The defendants' user's manual contained mirror
images of the plaintiff's data input forrnats. 238 The commercial success of the plaintiff's
program was largely attributed to the plaintiff's user's manuals and input formats, which
made . the plaintiff's program easier to use than other structural analysis programs on
the market?" The defendants designed their structural analysis program to be "wholly
compatible" with the plaintiff's program, meaning that the defendants' program received
its data in the same manner as the plaintiff's program.20 This "user interface" compat-

2" See Whelan, 797 F.2d at 1236.
2" Id.
236 462 F. Supp. 1003 (N.D. Tex. 1978) (bench trial order). The idea/expression dichotomy also

has been addressed in numerous videogame copyright cases. In most of these cases the plaintiff
alleges a copyright in the audiovisual component of the game. In such cases the court must
determine whether such game features as character appearance and game play action are idea or
expression. See, e.g., Frybarger v. International Business Machs. Corp., 812 F.2d 525, (9th Cir.
1987); Midway Mfg. Co. v. Artic Intl, Inc., 704 F.2d 1009, 1012, 1014 (7th Cir. 1983) (holding (1)
that videogames are copyrightable as audiovisual works; (2) that a "speeded-up" version of a
copyrighted game is a derivative work of the original game); Stern Elecs., Inc. v. Kaufman, 669
F.2d 852, 856 (2d Cir. 1982) (player participation does not disqualify videogames from copyright);
Midway Mfg. Co. v. Bandai-America, Inc., 546 F. Supp. 125, (D.N.J. 1982); Atari v. Amusement
World, Inc., 547 F. Supp. 222, (1). Md. 1981).

Some of the videogame cases have involved alleged infringements of both the computer
program that runs the game and the audiovisual component. See, e.g., Williams Elec., Inc. v. Artic
Int'l, Inc., 685 F.2d 870 (3d Cir. 1982); Midway Mfg. Co. v. Strohon, 564 F. Supp. 741 (N.D. 111.
1983) (both holding that the ROM, object code contained on a silicon chip, is protected by copyright).

"7 462 F. Supp. at 1004. An 1113M program performing the same general functions was on the
market even prior to the plaintiff's creation of its program. Id. at 1006.

299 1d. at 1012. The defendants' program used a preprocessor program that accepted data in
these formats. Id.

"o Id. at 1006.
240 1d. at 1008-09.

September 1988]	 COPYRIGHTED SOFTWARE	 833

ibility allowed former users of the plaintiff's program to switch to the defendant's
program with a minimum of training and without losing data already accumulated on
key punch cards. 24 '

The Synercom defendants contended that the plaintiff's input formats were unco-

pyrightable blank forms. 242 Because copyright protects only an author's expression, 245

the defendants argued that material that contains no expression may not be the subject
of copyright. Accordingly, blank forms, which contain no expression, are not copyright-
able. 244 The court ruled, however, that forms that communicate information may be the

subject of copyright protection. 245 Judge Higginbotham in Synercom concluded that the
plaintiff's input formats "expressed," to the user, by placement of line, shading, and
words, "what data to place where and how to do it" and therefore, that they were not
blank forms. 246

The Synercom defendants also argued that they had taken only the ideas expressed
in the plaintiff's input formats. 247 Judge Higginbotham, considering that contention,
avoided the error of identifying the unprotected idea with the function served by the
input formats. Instead, Judge Higginbotham held that the defendants, in copying the
ordering and sequencing of data from plaintiff's input formats, copied only unprotected
ideas. This conclusion implicitly recognizes that the plaintiff's input formats contained
unprotected ideas. Thus, the Synercom plaintiff's competitors were not limited to dupli-
cating the function performed by the plaintiff's work; they could use the ideas that the
plaintiff previously had used. The Synercom plaintiff argued that the ordering and
sequencing of data were expression. Judge Higginbotham responded by asking what
"separable idea" is expressed by the ordering and sequencing of data. 246 Had the judge
viewed the unprotected idea as the overall function of the formats, all levels of detail
beyond function would have been expression. 245

241 Id. at 1009. Synercom is, no doubt, the first of many "user interface compatibility" cases. User
interface cloning may be the wave of the future as software distributors focus on designing software
that is easy to use. The software of tomorrow is likely to arrive with on-line documentation and
training rather than voluminous training manuals. Kellner, Next On-Line: Users Are Calling For a
New Face on Training, PC Wimic, June 16, 1987, at 45.

242 462 F. Supp. at 1011.
2" See supra Part 11 D.
244 	 v. Remington Rand, Inc., 52 F. Supp. 732, 736 (N.D. Tex. 1942); Synercom, 462 F.

Supp. at 1011.
The principle that blank forms are not copyrightable usually is traced back to Baker v. Selden,

101 U.S. 99 (1879), discuSsed supra notes 59-63 and accompanying text.
245 	 462 F. Supp. at 1011 (citing Harcourt, Brace & World, Inc. v. Graphic Controls

Corp., 329 F. Supp. 517 (S.D.N.Y. 1971)). See generally I M. NIMMER, supra note 5, § 2.18.
246 	 462 F. Supp. at 1012.
247 Id.
242 	 at 1013. If Judge Higginbotham had viewed the ordering and sequencing of data as

protected expression, the defendants had another fall-back argument, merger — because use of
the idea of input formats requires substantial duplication of Synercom's arrangements, copyright
protection should not be allowed. Id. at 1013. There were hundreds of programs available for
structural analysis, all with data input formats. Only the plaintiff's and defendants' program used
the input formats developed by the plaintiff. Id. at 1007. Obviously there were other ways to instruct
users as to data input. The key to the merger defense is the level of abstraction at which the idea
is defined — if the unprotected idea is simply the input format function, the merger argument
must Fail. If, however, the unprotected idea is this par/lc/Liar way of entering data, the argument
would succeed.

249 As an alternative basis for the conclusion that defendant's use of the plaintiff's input formats

834	 BOSTON COLLEGE LAW REVIEW 	 [Vol. 29:803

In four later software idea/expression cases — SAS Institute, Inc. v. S & H Computer
Systems, inC.; 25° Q-Co Industries, Inc. v. Hoffmari; 2" Plains Cotton Cooperative Association v.
Goodpasture Computer Service; 252 and Digital Communications Associates, Inc. v. Sof&lone Dis-
tributing Corp., 253 — the courts recognized, like Synercom, that a computer program
contains many uncopyrightable ideas. SAS, Q-Co, and Plains involved alleged copying of
the plaintiff's program code or program structure; DCA, like Synercom, involved user
interface copying.

In SAS the plaintiff maintained that the defendant used the plaintiff's object code
and source code to create a statistical analysis program similar to the plaintiff 's. 254 The
plaintiff's program ran only on IBM-compatible computers. The defendant "translated"
or converted the program so that it would run on non-IBM computers. The plaintiff
claimed that the defendant's product was either a "copy" of its program or a "derivative
work" based on that program. In developing the new program, the defendant made
printouts of the plaintiff's source code available for the defendant's programmers to
examine.2" The SAS court found that the defendant used the plaintiff's source code
"extensively and systematically" in preparing the defendant's product. Also, although
the defendant's program was not a duplicate of the plaintiff's, the court ruled that the
translated program drew heavily from the plaintiff's program. 256 Further, the defendant
prepared no design documentation for its software, which the court also considered
evidence of wholesale copying. 257

If the SAS court considered whether the defendant took unprotected ideas or
protected expression, it is not apparent from the court's opinion. 255 If, as the judge

was not infringement, the court stated that "if the court is wrong in its finding that order and
sequence are expressed ideas, not expressions, its alternative holding is that the formats are not
copyrightable." Id. at 1014. Is the court, in stating that "the formats are not copyrightable,"
analogizing to the "blank form" cases? That seems unlikely, since, earlier in the opinion, the court
rejected the defendant's contention that the formats were uncopyrightable blank forms. Id. at 1011-
12. Is the court here stating that in an input format the idea and the expression have merged? If
the court is stating that the ideas in the input formats are capable of only one expression, the
statement is less than clear.

"" 605 F. Supp. 816 (M.D. Tenn. 1985).
"' 625 F. Supp. 608 (S.D.N.Y. 1985).
2" 807 F.2d 1256 (5th Cir.), cert. denied, 108 S. Ct. 80 (1987).
"5 659 F. Supp. 449 (N.D. Ga. 1987).
254 SAS Inst., Inc. v. S & Ii Computer Sys., Inc., 605 F. Supp. 816, 817 (M.D. Tenn. 1985).

SAS was tried without a jury in the fall of 1983. Id.
255 	 at 821 (Finding 30). The programmers had text editors available to help them edit and

rearrange the plaintiff's code. Id. at 822 (Finding 31). The text editor was used to systematically
change code. Id. at 823 (Finding 44).

"old. at 822. One of the plaintiff's experts testified that he had identified forty-four specific
instances in which the defendant's program showed evidence of direct copying from the plaintiff's
work. The defendant argued that a showing of forty-four examples of copying in the context of
186,000 lines of source code established, if anything, trivial similarities between the programs. The
court rejected the defendant's contention. 605 F. Supp. at 822 (Findings 35 and 38). The defendant
had destroyed earlier versions of its source code that were more similar to the plaintiff's code. Id.
at 822-23 (Finding 40).

257 Id. at 823-24 (Finding 46). In further support of its conclusion of copying, the court noted
that the defendant's program contained functionless references that were present in the plaintiff's
code. Id. at 824 (Finding 52).

258 See rd. at 825 (Finding 58) (stating that the copying was of expression, not merely ideas); id.
at 829 (whether the similarities are of idea or expression is a question of fact, and the court found
as a matter of fact that the defendant duplicated expression).

September 19881	 COPYRIGHTED SOFTWARE	 835

decided, the defendant extensively used the plaintiff's source code, the defendant prob-
ably should be viewed as having taken expression not. just ideas. Even though the court

did not identify the program's unprotected ideas or explain why what was taken qualified
as expression, the court nonetheless avoided the error of equating the unprotected idea
with program function. The SAS court stated that the defendant presented no evidence
that the "functional abilities, ideas, methods, and processes of [the plaintiff's program]
could be expressed in only very limited ways." 2"" This statement indicates implicitly that
the plaintiff's program contained many ideas. Here the court appears to have recognized
that there are many unprotected ideas within the protected program.

The SAS court clearly recognized this article's principle that code and protected
expression are not synonymous. The SAS defendant maintained that its statistical analysis
program could not be substantially similar to the plaintiff's because the plaintiff had
shown that the defendant directly copied from the plaintiff's program only forty-four

lines of the defendant's 186,000 total lines of source code. 2"" The court rejected that.
contention, finding instead that the defendant's copying "pervaded" the defendant's
product." The defendant, in the court's view, did more than copy specific lines of code;
rather, the defendant also copied the "organization and structural details" of the plain-
tiff's work. 2 "2

Accordingly, the SAS court acknowledged that a program's expression is not limited
to its code; organization and structural details also are protected expression. The SAS

court made that point more explicit by citing Meredith Corp. a. Harper & Row, Publishers,

Ine. 20 In Meredith, the court found that the defendant duplicated a textbook's expression
by outlining the textbook and giving sections of the outline to writer's who then wrote

new text based on their assigned outline segments. 261 The Meredith court. found infringe-
ment based primarily on the defendant's duplication of the plaintiff's topic selection and
arrangement. 265 The SAS court found that the SAS defendant followed a procedure
similar to that used by the Meredith defendant, picking a leading work and duplicating

the basic outline of that work. The SAS defendant even provided portions of the
plaintiff's source code to the programmers who wrote the defendant's code, the court
noted.26"

25"Id, at 825 (Finding 6(1). For criticism of this court's emphasis on the defendant's bad faith,
see Ledsinger, supra note 119, at 268-75; Radcliffe, Recent Developments in Copyright Law Related to
Computer Software, 1985 COMPUTER L. REP. 189, 194. Another commentator views the case as
suggesting that the courts may be moving toward the view that the defendant's course of devel-
opment of its software is relevant to proving substantial similarity. See Note, supra note 4, at 515-
16.

26"605 F. Supp. at 822, 830 (Finding 38).
w Id. at 830.
262 Id. at 822, 830 (Finding 38). The court also noted that two of the plaintiff's employees, on

observing earlier versions of the defendant's source code, found numerous instances of "literal,
near literal, and Organizational copying." Id. at 822 (Finding 39), The court concluded that the
defendant had destroyed earlier versions of its source code to disguise its conduct. Id. at 824.

266 378 F. Supp. 686 (S.D.N.Y.), aft' d, 500 F.2d 1221 (2d Cir. 1974), (slip np. after trial), 413 F.
Supp. 385 (S.D.N.Y. 1975).

264 Meredith, 413 F. Supp. at 386.
266 See id, at 386, 387. Only eleven percent of Meredith defendant's actual prose was copied from

the plaintiff's work. Id. at 386.
2 "6 SAS, 605 F. Supp. at 830. The SAS case, as one commentator has suggested, demonstrates

the difficulties of evidence and proof in software copyright litigation, By the time of trial the

836	 BOSTON COLLEGE LAW REVIEW	 [Vol. 29:803

The SAS court noted that substantial similarity of protected expression does not
require literal identity — "a play may be pirated without using the dialogue." 267 The
court adopted as a finding of fact the testimony of an expert concerning the nature of
programming:

[bleginning with a broad and general statement of the overall purpose of
the program, the author must decide how to break the assigned task into
smaller tasks, each of which must in turn be broken down into successively
smaller and more detailed tasks. At the lowest levels the detailed tasks are
then programmed in source code. At every level, the process is characterized by
choice, often made arbitrarily, and only occasionally dictated by necessity. . . . As the
sophistication of the calculation increases, so does the opportunity for vari-
ation of expression.268

The court's conclusion that the defendants duplicated not just ideas, but also expression
may have stemmed from a belief, based on this testimony, that choices made by a program
author at detailed levels of the program preparation are expression.

In both Q-0O269 and Plains,270 the courts held the defendant did not infringe the
plaintiff's copyright, although in each case the defendant's program was very similar to
the plaintiff's program. 271 In each case the plaintiff alleged that its program was infringed
by a program prepared by the same programmers who earlier had created the plaintiff's
program. 272 The defendants in both cases obviously were completely familiar with the
plaintiff's program. In neither case, however, did the defendant literally duplicate the
plaintiff's work.

In Q-Co the court found that there were four modules common to the plaintiff's
and defendant's programs, but ruled that the defendant had taken only ideas, not

defendant had destroyed early source code printouts. Expert witnesses testified based on recon-
structed source code. The defendant apparently continued to modify its program during the course
of litigation, eliminating previously spotted similarities. Radcliffe, supra note 259, at 194.

2"7 SAS, 605 F. Supp. at 829 (quoting Sheldon v. Metro-Goldwyn Pictures Corp., 81 F.2d 49,
55 (2d Cir.), cert. denied, 298 U.S. 669 (1936)).

266 Id. at 825 (Finding 59) (emphasis added).
20" Q-Co Indus., Inc, v. Hoffman, 625 F. Supp. 608 (S.D.N.Y. 1985).
27D Plains Cotton Coop. Ass'n v. Goodpasture Computer Serv., Inc., 807 F.2d 1256 (5th Cir.),

cert. denied, 108 S. Ct. 80 (1987).
271 The Plains court described the defendant's program as very similar to the plaintiff's "on

the functional specification, programming, and documentation levels." 807 F.2d at 1259. The Q-Co
defendant's program contained four modules corresponding to four of the twelve modules in the
plaintiff's program. 625 V Supp. at 614.

212 Q-Co, 625 F. Supp. at 611; Plains, 807 F.2d at 1258. One of the individuals involved as
defendants in Q-Co had formerly worked for the plaintiff and had developed a teleprompter
conversion program for the plaintiff. After the defendant left the plaintiff's employment, the
defendant and another programmer prepared a software program to turn an IBM PC into a
teleprompter. The two programs had some differences arising out of the hardware differences
between the IBM PC and Atari PC, the computer for which the original program was designed.
The second program was written in a different computer language than the plaintiff's program
and employed distinct algorithms. 625 F. Supp. at 011-15.

In Maim the individuals who created for the plaintiff a mainframe software system, designed
to assist farmers in the growing and marketing of cotton, left the plaintiff's employment. They
eventually went to work for the defendant, where they created a personal computer program
serving the same purpose. 807 F.2d at 1257-59.

September 1988]	 COPYRIGHTED SOFTWARE	 837

expression.273 This ruling recognizes implicitly that the modules contained many unpro-
tected ideas. The Q-Co court found the four corresponding modules to be "similar in
structure and organization, including a few structural similarities." 274 The court stated
that the plaintiff did not show that the defendant's program modules contained any
unique expression derived from the plaintiff's work. Rather, the court found, the de-
fendants reused only the ideas they had used earlier in designing the plaintiff's mod-
ules. 275

In Plains, the Fifth Circuit. upheld the district court's findings, made on a motion
for a preliminary injunction, that the plaintiff did not demonstrate that the defendant
had copied the plaintiff's protected expression. 276 The program designers testified that
they did not, in preparing the defendant's personal computer program, refer back to
the plaintiff's mainframe program, which they had earlier created; they merely reused
their knowledge of the industry. 07 The Fifth Circuit refused to reverse the trial court,
stating that the evidence indicated that many of the similarities between the two Plains

programs were dictated by the externalities of the industry. 278 This statement may be an
acknowledgement that many unprotected ideas go into the design of any program.

Whether Q-Co and Plains recognize that code and protected expression are not
synonymous is questionable. The Plains appellate court, noting that the issue of whether
the reproduction of a program's organizational structure was copyright infringement
was presented only on a partially developed record from the denial of a preliminary
injunction, "decline[d] to hold that [sequence and organization] patterns cannot consti-
tute ideas in a computer context."279 Similarly, in Q-Co there were no allegations of
outright code copying. The plaintiff's and defendant's programs were written in differ-
ent computer languages arid used different algorithms. 28" The court found that the

defendant's program was a different program "because of language and hardware." 28 ' In
so stating, the court may have equated protected expression and programming code —
the court's emphasis on the use of a different language may stem from a belief that
protected expression is limited to code. The Q-Co court concluded that "the [plaintiff's
and defendants'] modules in different languages were similar in the sense of ideas 'rather
than expressions. -282 Although it is impossible to know, the court may have identified
the program similarities as idea-level similarities simply because there was no code
duplication.

278 625 F. Supp. at 616.
274 Id. at 614.
275 Id. at 616. The Q-Co court stated that "there is no testimony establishing any unique

expression based on the existence of the ... modules, since the same modules would be an inherent
part of any prompting program." Id, at 616. Although the court seems to recognize the existence
of unprotected ideas within the modules, the reasoning is puzzling. Is the court saying that the
modules contain no expression because they contain no novel ideas? Such a conclusion would be
incorrect. See supra notes 16-18 and accompanying text.

276 Plains Cotton Coup. Ass'n v. Goodpasture Computer Serv,, Inc., 807 F.2d at 1256, 1262
(5th Cir.), cert. denied, 108 S. Ct. 80 (1987).

277 Id. at 1260-61.
278 Id. at 1262.
279 Id.
28° 625 F. Supp. at 614.
vt" Id. at 615 (emphasis added).
282 Id.

838	 BOSTON COLLEGE LAW REVIEW	 [Vol. 29:803

The Q-Co court also addressed the plaintiff's claim that the defendants' program

was a derivative work based on the plaintiff's program."' In this context, the court did

consider "the relevance of similarities of [program] structure and organization," 28' re-

ferring to Synercom 2" for guidance. Judge Higginbotham, questioning in Synercom
whether the input formats copied by the defendants were protected expression, asked

what separable idea was being expressed in the formats. 286 To answer that question

Judge Higginbotham analogized to the "Figure-H" pattern of an automobile stickshift.

Judge Higginbotham labeled the "Figure-H" pattern itself the idea. Expression of this

idea, according to Judge Higginbotham, would take some form other than the stickshift

itself: "The pattern . . . may be expressed in several different ways: by a prose description

in a driver's manual, through a diagram, through a photograph, or driver training film,

or otherwise."'" Although each of these examples would be protected by copyright,

Judge Higginbotham reasoned, the copyright on a form of expression would not prevent

another car maker from using the Figure-H shift. 288 The Synercom analogy is disturbing

in the context of software, however, because Judge Higginbotham seems to be equating

protected expression with description of a functional object. If only descriptive or in-

structional material qualifies as expression, then programs do not contain expression. 289

Although prose descriptions of the software, user manuals, and reviews of software

performance would qualify as protected expression, the functional object itself — the

program — would be only an unprotected idea. The Q-Co court expanded the Synercom
stickshift analogy, concluding that the program order and organization could "be more

closely analogized to the concept of wheels for the car rather than the intricacies of a

particular suspension system." 2" Thus it appears that the Q-Co court is holding that only

complex programs qualify for copyright protection. The Q-Co court further noted that

the SAS"' court had considered the relevance of organizational similarities in the plain-

tiff's and defendant's programs, but it. distinguished SAS because SAS involved "slavish

copying" by the defendant. 26" The difference between the hardware used by the plaintiff

and the defendant, the Q-Co court stated, would have made slavish copying impossible

in this case.28'

In DCA"' the question before the court was whether the defendants' program

infringed the plaintiff's audiovisual work copyright on the arrangement and design of

283 Id. at 615-16.

2131 Id. at 616.

285 Synercom Tech., Inc. v. University Computing Co., 462 F. Supp. 1003 (N.D. Tex. 1978).

See supra notes 204-09 and accompanying text for a discussion of the facts of the case.

285 1d. at 1013.
2147 Id.
288 Id.
289 	 this view the program comments — program statements that guide the programmer

and are not translated into machine code — could be expression, but nothing else in the program

would be.

290 Q-Co, 625 F. Supp. at 616.

291 605 F. Supp. 816 (M.D. Tenn. 1985).

292 Q-Co, 625 F. Supp. at 616.

293 Id.
294 Digital Communications Ass'n v. Softklone Distrib. Corp., 659 F. Supp. 449 (N.D. Ga. 1987).

The original name of the case was Microstuff, Inc. v. Softklone Distributing Corp. In 1986 Digital

Communications Associates purchased Microstuff. DCA was then substituted as the plaintiff in the

action. Id. at 453.

September 1988]	 COPYRIGHTED SOFTWARE	 839

a program's status screen. 298 The plaintiff's program, Crosstalk, enabled a user's com-

puter to "communicate", with other computers, allowing a microcomputer user to access

information stored in other microcomputers or in a remote mainframe computer. 296

Crosstalk was a commercial success.° The success was partly attributable to the pro-

gram's "status screen," or main menu, which appeared immediately following the sign-

on screen display to give the user the program's parameter/command terms under

various descriptive headings and to allow the user to enter commands changing the

program's operation." The DCA defendant, ForeTec Development. Corporation, ob-

tained through commercial sources a copy of Crosstalk for purposes of developing a

"clone" of Crosstalk. 299 ForeTec's legal counsel advised the company that though the

Crosstalk program's source and object codes were protected by copyright, the status

screen was not copyrightable. Accordingly, the attorney concluded that use of a similar

or identical status screen should not constitute an infringement of the plaintiff's copy-

rights.") ForeTec then developed a Crosstalk clone called "Mirror," which it began

marketing."'

After DCA filed suit and moved for a preliminary injunction, the defendants con-

tended that status screens are not copyrightable because status screens are a necessary

expression of the idea underlying status screens. 902 In order to analyze that contention,

the court had to identify the unprotected ideas involved in the status screen. The court

could simply have stated that the status screen's "idea" was that of communicating with

the program's user. Since every program has a user interface, it would be easy, under

that approach, to conclude that there are various means of achieving the desired purpose.

Because there are various means of achieving the desired purpose of communicating

with the user, the plaintiff's status screen would then be, in its entirety, protected

expression.

The DCA court did not choose to identify the idea underlying the status screen as

merely communicating with the user. Instead of defining the unprotected idea in terms

of the overall function, the court defined the program's idea as "the process or manner

295 Id. at 452. One of the defendants' defenses to the copyright infringement action was that

the Crosstalk status screen was not copyrightable subject matter. As a preliminary matter, the court

had to decide whether a program's copyright protection extends to the program's screen display:

Does copying a program's screen display, absent copying of the source code, object code, sequence,

organization or structure, infringe the program's copyright? Judge O'Kelley of the Northern District

of Georgia determined in DCA that screen displays are not protected by the progratn's copyright.

-Fite court then went on to consider the plaintiff's claim that the defendants' copying of the

plaintiff's status screen infringed the plaintiff's separate copyright on the status screen. Id. at 455—

56.

298 Id. at. 452.
297 Id.
298 Id. The plaintiff obtained copyright registrations on the Crosstalk User Manual, the program

itself and the "main menu" status screen. Id. at 454.

2" Id. at 453.

509 Id.
"01 Id. ForeTec formed a separate corporation, a wholly owned subsidiary, Softklone Distrib-

uting Corporation, for the purpose of marketing and distributing Mirror. Id.
"2 Id. at 457. The defendants, relying on Baker v. Seidel", 101 U.S. 99 (1879), argued both

that (1) the Crosstalk status screen is a necessary expression of its idea so as to merge expression

with idea; and (2) that the status screen is nothing more than a "blank form" for recording the

program user's choices of commands and parameters. The court rejected both contentions. 659 F.

Supp. at 456-57.

840	 BOSTON COLLEGE LAW REVIEW	 [Vol. 29:803

by which the status screen ... operates." 3"3 The expression, therefore, is "the method
by which the idea is communicated to the user." 304

In DCA, Judge O'Kelley identified ideas within the status screen. "Certain aspects"
of the screen, he stated, "are clearly ideas which any other party, including the defen-
dants, could legally copy.""3 The use of a screen to reflect program status is an idea, the
court ruled, as is the use of' a command-driven program and the typing of two symbols
to activate a command. 306 The DCA defendants, however, took more than those ideas
from DCA's program. Rather, the court stated, the defendant copied arrangement
headings, capitalization, and highlighting from the plaintiff's screen, features that in-
volved "considerable stylistic creativity and authorship above and beyond the ideas
embodied in the status screen." 3" This copying was, in Judge O'Kelley's view, not
necessary for use of the screen's ideas. Accordingly, the defendant's merger defense
failed.308 The court concluded that the defendant's screen was substantially similar to
the plaintiff's at both the idea level and the expression level and granted the preliminary
i njunction .""

In E. F. Johnson v. Uniden Corp.,'decided in 1985, a few months after SAS and before
DCA, the defendant revel -se engineered the plaintiff's software to create a trunked logic
mobile radio compatible with the plaintiff's mobile radio system."0 Uniden, like SAS, is
a pre-Whelan "translation" case recognizing that code and protected expression arc not
synonymous. The Uniden defendant introduced into evidence a line-by-line, side-by-side
comparison of the plaintiff's and defendant's codes translated into a common language.
It was, to the court, "obvious at a glance that the programs thus depicted are not line-

"3 Id. at 458.
504 Id. This definition of expression will not work for program code or program organization

copying cases. lti program code or organization cases, the program is designed to instruct the
machine, so communication to the user cannot be the test for expression.

305 Id. at 459.
306 Id.
"7 Id. at 460.
"5 1d. The defendants relied on Synercom, arguing that the status screen, like the input formats

in Synercom, was the necessary expression of the idea and thus merged with the idea. As Judge
O'Kelley pointed out, however, the Synercom defendant did not create format cards with the same
headings and shaded areas as the plaintiff's input formats. id. As to the Synercom court's murky
alternative holding that formats are not copyrightable, Judge O'Kelley in DCA found that though
the Synercom format cards showed no stylistic creativity beyond data sequencing, the DCA plaintiff's
status screen involved considerable stylistic creativity and authorship beyond the level of the ideas
embodied in the status screen. id.

As to the defendants''blank forms" , argument, the court concluded that the status screen, even
if a "form," expressed and conveyed information and was therefore copyrightable. Id, at 462.

"'Id. at 465. On August 10, 1987:the parties announced that they had settled the case and
that the defendant would drop its appeal to the Eleventh Circuit. Computer Industry Litigation Rep.,
August 24, 1987, at 6351-52.

Litigation in the "user interface" copying area continues, with two cases filed in 1987 by Lotus
Development Corporation alleging that defendants copied the organization, structure and sequence
of Lotus 1-2-3 and the "user interface" of Lotus 1-2-3, and with Apple Computer, Inc. v. Microsoft
Corp., C.A. No. C 88-20149 (N.D. Cal., filed Mar. 17, 1988). The user interface litigation is referred
to in the software industry as "look and feel" copyright litigation. See supra note 69 and accom-
panying text for the origin of that phrase. The Lotus cases are Lotus Dev. Corp. v. Mosaic Software,
Inc., C.A. No. 87.0074-K (D. Mass. filed on Jan. 12, 1987); and Lotus Dev. Corp. v. Paperback
Software Intl, No. 87-0076-K (I). Mass., filed Jan. 12, 1987).

310 E.F. Johnson Co. v. Uniden Corp., 623 F. Supp. 1485, 1489-90, 1492 (D. Minn. 1985).

September 1988]	 COPYRIGHTED SOFTWARE	 841

by-line duplications.'"" I The court found the line-by-line code differences unconvincing,
however, recognizing that the defendant's actual program code would have to look
different from the plaintiff's code because the plaintiff and defendant used different

microprocessors. 3 ' 2 Literal translation of the plaintiff's program into a language com-
patible with the defendant's microprocessor, the court noted, "necessarily involves a
skewing of the program such that line-by-line comparison becomes meaningless." 313

Additionally, the court recognized that one microprocessor will require a different
number of commands than a second microprocessor. 3 •

The Uniden court held that the defendant's program was substantially similar to the
plaintiff's at the level of expression as well as at the level of ideas, 315 even though the

defendant's code and plaintiff's code, when translated into a common language, did not
look alike. Thus, the court recognized that expression begins somewhere between the
general outline of the program and the coding. Additionally, the court stated in a
footnote that the defendant's program would have been non-infringing if the defendant
had "contented itself with surveying the general outline of the [plaintiff's program],
thereafter converting the scheme into detailed code through its own imagination, cre-

ativity, and independent thought." 516 At some point in the program's design, the court

noted, "the idea or 'broad and general statement of the overall purpose' of the program
merges into the expression, the 'smaller 'and more detailed tasks' necessary to carry out
that idea." ' 7 This statement implicitly acknowledges both that the plaintiff's program
contained many unprotected ideas and that protected expression is not just the code
itself. The court came close to applying a Hand-Nimmer abstractions test,"" noting that
a programmer designs a program by breaking the program's overall purpose into suc-
cessively smaller tasks, and finally expressing each detailed task in source code. 31" The

Uniden court did not go on to draw the line between idea and expression, however,
because the defendant took virtually the plaintiff's entire program. 32°

"I Id. at 1497.
515 Id. The plaintiff's program was designed to run on an Intel microprocessor, whereas the

defendant's program ran on a Hitachi microprocessor. Id.
3 " Id. The court noted that the district court in Whelan, despite finding that the defendant's

BASIC program was not a line-by-line duplication of the plaintiff's EDL program, had concluded
that copying had taken place. Id. (citing Whelan Assocs. v. Jaslow Dental Laboratory, Inc., 609 F.

Supp. 1307 (E.D. Pa. 1985), aff'd, 797 F.2d 1222 (3d Cir. 1986), cert. denied, 107 S. Ct. 877 (1987)).

The Uniden opinion quoted Whelan's comment that "transferring or converting from one computer
language to another is not comparable to translating a book written in English to French." Id. at

1497 (quoting Whelan, 609 F. Supp. at 1320).
s' 4 1d.
'I , Id. at 1501, 1503. The defendant's program utilized the same sample error table as the

plaintiff's program and sampled incoming "bits" at the same speed as the plaintiff's programs —
choices that did not snake functional sense for the defendant's microprocessor. Id. at 1494. The
defendant's program also contained the same superfluous instructions and the same select call
prohibit features as the plaintiff's. Id. at 1495-96. Additionally, thirty-eight of the plaintiff's
program's forty-four subroutines appeared in the defendant's program. Id. at 1496-97.

916 Id. at 1501 n.17.
515 Id. (quoting SAS inst., Inc. v. S & H Computer Sys., Inc.; 605 F. Supp. 816,825 (M.D. Tenn.

1985)). The internal quotations are from SAS.
515 See supra notes 77-81 and accompanying text.
519 623 F. Stipp. at 1501 n.17 (quoting SAS, 605 F. Supp. at 825).
szo Id. In another footnote the Uniden court stated that the "bottom line" in a computer software

context "is whether the copyrighted instructions are the sole means of accomplishing a given task
." Id. at 1501 n.16. This statement is correct in the context of an analysis of a merger defense.

842	 BOSTON COLLEGE LAW REVIEW 	 [Vol. 29:803

The Whelan"' court, in holding that a program's copyright protects a program's
structure, obviously recognized that a program's protected expression is not limited to
its code. The court noted that it had long been established that works of literature may
be infringed without substantial literal similarity. The copyright on a play or book, for
example, may be infringed by taking the plot. 322 Thus, the court reasoned that "by
analogy to other literary works, it would ... appear that the copyrights of computer
programs can be infringed even absent copying of the literal elements of the program." 3"

In Whelan, the court decided the "first impression" question of "whether the struc-
ture (or sequence and organization) of a computer program is protectable by copyright,
or whether the protection of the copyright law extends only as far as the literal computer
code."924 The plaintiffs in Whelan owned "Dentalab," an Event Driven Language (EDL)
program helpful in the operation of dental laboratories. The Whelan defendants, former
sellers of the plaintiff's program, developed and sold a BASIC-language applications
program similar to Dentalab. 325 The defendant's program was not a mechanical or direct
translation of Dentalab; 326 the differences between EDL and BASIC made a literal
translation impossible. 327 As the plaintiff's expert witness testified, there were three
similarities between the two programs; the file structures, the screen outputs, and five
important "subroutines" virtually were identical in the two programs. 328

321 Whelan Assocs. v. Jaslow Dental Laboratory, Inc., 797 F.2d 1222 (3d Cir. 1986), cert. denied,
107 S. Ct. 877 (1987).

322 Id, at 1234.
323 Id. For the viewpoint that the analogy to traditional literary works is inappropriate, see

Karjala, supra note 36, at 48-51,61.
Interestingly, the Whelan appellate court cited SAS as supporting the Whelan conclusion that

the organization of a program is protected by copyright. According to Whelan, the SAS court
considered "the organizational similarities of the [plaintiff's and defendant's] programs" in reaching
its decision that the defendant's program violated the plaintiff's program. 797 F.2d at 1239. SAS,
it is true, did include a finding that the defendant's program "follows the. Organizational structure
of [the plaintiff's program], down to a detailed level." See SAS, 605 F. Supp. at 825-26. One of the
plaintiff's experts testified that the defendant's program "employed a very close paraphrase of the
[plaintiff's program's] organization and structure." Id. at 826. The SAS court concluded that the
defendant's copying not only affected si)ecific lines of code but also pervaded the entire product,
in that it involved copying of the "organization and structural details" of the plaintiff's work. Id. at
830. Although this language foreshadows the Whelan claim that copying the program's organization
is, even without code copying, infringement, the SAS defendant apparently copied at a more detailed
level than program organization. The SAS infringement involved both code similarity and organi-
zational copying. Whelan involved only the tatter.

324 797 F.2d at 1224 (footnote omitted).
323 1d. at 1226. The plaintiff in this case, a software consultant, had originally developed

Dentalab for the defendant corporation. Id. at 1225-26. The plaintiff then hired the defendant to
market the program. The plaintiff's program was written in EDL, the language used in a particular
series of IBM computers. One of the individuals associated with the defendant corporation realized
that Dentalab, because it was written in EDL, could not be used on the smaller personal computers.
He developed a program in the BASIC language and called it "DENTCOM." Id.

926 1d. at 1228.
327 Radcliffe, supra note 259, at I96. Sec supra Part III C regarding translations of programs.
328 797 F.2d at 1228. One of the defendants' witnesses compared the source code and object

code of the two programs and testified about the differences between the programs. That witness
concluded that "'substantive differences in programming style, in programming structure, in al-
gorithms and data structures, all indicate that the [defendants' program] is not directly derived
from Dentalab.'" Id,

September 1988]	 COPYRIGHTED SOFTWARE	 843

The district court held that the defendant's program was substantially similar to the
plaintiff's program because the two programs' structures and overall organization were
substantially similar. 329 Accordingly, the district court concluded that the defendant's
program violated the copyright on Dentalab."') On appeal, the Whelan defendants con-
tended that the district court's holding of infringement was erroneous because copyright
covers only the literal elements of computer programs and the plaintiff did not show
that the defendant literally copied the program source code or object code."' The
structure of a program, the defendants maintained, is by definition the idea and not the
expression of the idea."2 The appellate court, acknowledging that it is frequently difficult
to distinguish a work's ideas from the work's expression, 33 formulated "a rule for

distinguishing idea from expression in computer programs." "4 The Whelan court, citing

Baker v. Selden,'" determined that "the purpose or function of a utilitarian work would be the
work's idea, and everything that is not • necessary to that purpose or function would be part of the

expression of the idea.""' n Further, the court stated that "where there are various means of
achieving the [program's] desired purpose, then the particular means chosen is not
necessary to the purpose; hence there is expression, not

This Whelan "rule" is, in part, a direct echo of language of the same appellate court's

decision in Apple Computer, Inc. v. Franklin Computer Corp." 6 In Franklin, decided in 1989,
the plaintiff Apple alleged that the defendant had duplicated Apple's copyrighted op-
erating systems software. The defendant Franklin admitted duplicating Apple pro-
grams."9 Franklin's goal in copying Apple's operating systems program was to make
Franklin's "ACE 100" personal computers compatible"" with the numerous application
programs designed to run on Apple II computers."' The district court in Franklin denied

Apple's motion for a preliminary injunction. The court expressed doubt as to the
copyrightability of object code and operating system programs, and held that Apple had
not made the necessary showing of likelihood of success on the merits. 542 On appeal, the

329 Id.
331) Id. Access was undisputed, the defendant having used and marketed Dentalab. Id. at 1225—

`26.
"' ld. an 1233.
332 Id. at 1235.
333 Id.
334 Id. at 1235-36.
"A 101 U.S. 99 (1879). See supra Parts II C and D for a discussion of Baker v. Selden.
336 797 F.2d at 1'236 (citation omitted, emphasis in original).
3" Id. (footnote omitted).
338 714 F.2d 1240, 1253 (3d Cir. 1983), cert, dismissed, 464 U.S; 1033 (1984).
339 Id. at 1245. Similarly, in Apple Computer, Inc. v. Formula Intl, Inc., 725 F.2d 521 (9th Cir.

1984), the defendant, charged with copying Apple operating systems programs to make its "Pine-
apple" computer Apple-compatible, conceded substantial similarity for the purpose of the appeal.
725 F.2d at 522-23.

34° See supra notes 130-33 and accompanying text for a discussion of "compatibility."
341 714 F.2d at 1245, 1253.
342 Apple Computer, Inc. v. Franklin Computer Corp., 545 F. Supp. 812, 825 (E.D. Pa. 1982),

retid, 714 F.2d 1241) (3d Cir. 1983), cert. dismissed, 464 U.S. 1033 (1984). Many copyright cases first
come to court on the plaintiff's motion for a preliminary injunction. According to "black letter"
law on preliminary injunctions, the movant (plaintiff) has the burden of proving four elements:
(1) that the movant has a substantial likelihood of success on the merits; (2) that there exists a
substantial threat of irreparable injury if the injunction is not issued; (3) that the threatened injury
to the moving party outweighs any damage the injunction might cause the defendant; and (4) that

844	 BOSTON COLLEGE LA W REVIEW	 [Vol. 29:803

Court of Appeals for the Ninth Circuit held in Franklin that a computer program is a
"literary work" whether it is in object code or source code, and is thus protected." 3 Next,
the Franklin court considered whether copyright protection extends to operating systems
programs. The defendant proposed two theories that operating systems are not protected
by copyright, The defendant contended that operating systems programs either are a
process, system or method of operation," 4 excluded from copyright protection by section
102(b) of the Copyright Act,'45 or that operating systems are, in their entirety, unpro-
tected ideas."6 First, the court disposed of Franklin's contention that the programs were
uncopyrightable methods of operation by stating that "Apple does not seek to copyright
the method which instructs the computer to perform its operating functions but only the
instructions themselves."" 7 The court analyzed more thoroughly, however, Franklin's
contention that an operating systems program is unprotected idea. In so analyzing, the
court first noted that "many of the courts which have sought to draw the line between
an idea and expression have found difficulty in articulating where [the line] falls." 348
The court then "quoted approvingly" from the 1926 Second Circuit Case Dymow v.
Bolton:

Just as a patent affords protection only to the means of reducing an inventive
idea to practice, so the copyright law protects the means of expressing an
idea; and it is as near the whole truth as generalization can usually reach
that, if the same idea can be expressed in a plurality of totally different manners, a
plurality of copyrights may result, and no infringement will exist." 9

Dymow does not offer any guidance as to how to separate expression from idea. 360 The
Franklin court, however, acted as though it did. The Franklin court found that guidance

0.
the injunction will not disserve the public interest. Franklin, 714 F.2d at 1245-46. In a copyright
case in which the defendant contends that it took, if anything, only unprotected ideas from the
plaintiff's work, analysis of the likelihood of success on the merits will require the court to determine
whether the defendant has taken protected expression or an unprotected idea.

As to review of the district court's decision on the motion for a preliminary injunction, appellate
courts often have stated that the decision is within the district court's discretion. See, e.g., Apple
Computer, Inc. v. Formula Ina Inc., 725 F.2d 521, 523 (9th Cir. 1984). The appellate court may
reverse the district court if the district court applied an incorrect legal standard or abused its
discretion. Id. at 525.

343 714 F.2d at 1249.
3" Franklin, 714 F.2d at 1250-52.
343 17	 102(b) (1982).
346 714 F.2d at 1252-53 (citing Baker v. Selden, 101 U.S. 99 (1879)).
347 1d. at 1251 (emphasis added).- The appeals court noted that Franklin had persuaded the

district court that an operating systems program, unlike an applications program, is part of a
machine. Id. Franklin also contended that operating systems may not be copyrighted because they
are "purely utilitarian works," Id. The court of appeals, citing Nimmer as to the proper interpre-
tation of Baker concerning works with utilitarian features, refused to accept that argument. Id.
(citing 1 M. Nimmen, 5upra note 5, § 2.18).

343 714 F.2d at 1253 (citing as an example Nichols v. Universal Pictures Corp., 45 F.2d 119,
!21 (2d Cir. 1930)). The court also noted that the line between idea and expression must be a
"pragmatic one," one that keeps in consideration copyright law's balance between preserving com-
petition and protecting authors' works. Id.

349 Id. (quoting llyrnow v. Bolton, 11 F.2d 690, 691 (2d Cir. 1926) (emphasis added in Franklin)).
330 In Dymow, the appeals court, reversing the trial court, held that the defendant's play did not

infringe the plaintiff's play by copying a "mere subsection of a plot." 11 F.2d at 692. Each play
presented "an ambitious girl of at least potential charm; who is willing to have her ambition served
by an ingenious young man, in financial straits." Id.

September 1988]	 COPYRIGHTED SOFTWARE	 845

in the Dymow language by turning the Dymow statement around. From Dymow's statement
— if the same idea may be expressed in many ways, each expression may qualify for
copyright — the Franklin court reasoned that if an idea is capable of various modes of
expression, any particular mode must be entirely expression." , Applying that principle

to the Franklin facts, the court reasoned that if other programs could be written to
perform the same function as Apple's operating systems programs, then the plaintiff's
programs necessarily were expression of the idea, not the idea itself."

If the Franklin court's holding was that Apple's programs are not, in their entirety,
unprotected ideas, the court was correct. If, however, the court's ruling was that the
programs are, in their entirety, protected expression, the court was incorrect. Any
program contains both unprotected ideas and protected expression. In the discussion
that follows the Franklin court's ruling.that the operating programs are not unprotected
ideas, the court appears to have equated unprotected idea with program function. In

remanding the case, the Franklin appellate court stated that the idea underlying one of
Apple's operating systems programs was "how to translate source code into object
code,""3 If the unprotected idea is limited to the program's function, as Franklin indi-
cated, however, it logically follows that everything contained in the program itself — all
lower levels of abstraction beyond function — must be protected expression.

The Franklin court's analysis failed to recognize that a program, like a book, contains
both expression and unprotected ideas. The literary analogy to the court's reasoning
would be to say that Gone With The Wind is, in its entirety, protected expression —
meaning that every element of the work, including historical setting, geographical setting,
and plot outline, as well as character development, literary style, and prose, is protected

expression. The Franklin defendant, whose goal was Apple-compatibility, viewed the
unprotected idea as creating an operating systems program for Franklin computers that
•,would run applications programs designed for the Apple II computer. There were,
according to the defendant Franklin, only a limited number of ways of achieving corn-

" I Franklin, 714 F.2d at 1253.
"2 Id.
"3 Id. What the court is describing in its example is a compiler, interpreter, or assembler. See

supra notes 116-20 and accompanying text. The court remanded the case to the district court for
factual findings concerning Apple's program but the parties settled.

In E.F. Johnson Co, v. Uniden Corp., discussed supra in Part IV, the defendant wanted its logic
trunked mobile radios to be "compatible" with the plaintiff's mobile radios, meaning that the
defendant's radios could receive signals from and transmit signals to mobile radios made by the
plaintiff. The heart of the plaintiff's system was computer software, 623 F. Supp. 1485, 1487 (1).
Minn. 1985). Uniden argued that in order to make its mobile radios compatible with the plaintiff's,
it was necessary for the defendant to "conform its software program to certain aspects of the
plaintiff's mobile radio software." Id. at 1501. Uniden further contended that it had to duplicate
data tables and certain subroutines in the plaintiff's program in order to achieve that end. Id.
According to Uniden, the very nature of the idea of achieving the desired system compatibility
limits the number of' ways the idea may be expressed, making any attempted copyright of the
merged expression void ob inilio. Id. The Uniden court responded with the Franklin court's approach
to the identification of idea and expression. The court asked whether other programs could be
written or created that perform the same function as the copyrighted program. If they could, the
court reasoned, then the program copied is protected expression. Id. at 1502. Although the Franklin
court viewed "the function" as the progrimi's purpose, the Uniden court viewed "the function" as
the defendant's compatibility objective, See id, The Uniden defendant's contention failed factually,
however, because the verbatim duplication was not necessary to achieve systems compatibility. Id,

846	 BOSTON COLLEGE LAW REVIEW	 [Vol. 29:803

patibility."4 This argument is known as the "merger" or "idea/expression unity" defense.
Briefly, the "merger" principle provides that if a particular idea may only be expressed
in a very limited number of ways, then giving the copyright holder's expression of that
idea copyright protection, in effect, gives that copyright owner a forbidden monopoly
over the underlying idea itself. 555 The Franklin appellate court summarily dismissed this
argument, stating the Franklin's goal of compatibility was a "commercial and competitive
objective which does not enter into the somewhat metaphysical issue of whether partic-
ular ideas and expressions have merged." 356 If the court had accepted Franklin's con-
ception of the idea as the compatibility goal, Franklin might have been successful in
convincing the court that the merger doctrine gave Franklin the right to copy Apple's
programs.s57 The characterization of the idea here determines the outcome. 358 Accord-
ingly, the Franklin court's view of the unprotected idea in terms of program function
doomed the defendant's merger argument. 359

The Franklin appellate court's conclusion that the trial court had erred in denying
the plaintiff a preliminary injunction was correct. 36° If a program contains any expression
at all, then one who copies "the whole thing" must copy not only unprotected idea, but
also the protected expression.361 The court's characterization of unprotected idea as

5" 714 F.2d at 1253.
555 Herbert Rosenthal Jewelry Corp. v. Kalpakian, 946 F.2d 738, 742 (9th Cir. 1971). See supra

notes 82-89 and accompanying text for a discussion of merger.
The Franklin court appears' to confuse merger with idea identification, stating, in response to

the defendant's contention that the plaintiff's programs were unprotected ideas, that its inquiry is
whether other programs can be written to perform the same function as Apple's. 714 F.2d at 1253.
That is the merger question, as the court notes, but it's not a proper question for drawing the line
between idea and expression.

556 719 F.2d at 1253.
551 It was unclear, at the time of the litigation, whether compatibility was dependent on using

an exact clone of Apple's operating systems programs. See Conley and Bryan, supra note 36, at
587-91; Grogan and Kump, supra note 127, at 115-16.

556 Nimmer and Krauthaus contend that the separation of expression from idea in copyright
cases is merely a mask for. the court's policy decision as to the degree of protection to be given the
first author and the degree of freedom to be allowed later authors. Nimmer Krauthaus, supra
note 36, at 31-32. •

359 In the factually similar case, Apple Computer, Inc. v. Formula Int'l Inc., the district court
granted Apple a preliminary injunction. 562 F. Supp. 775, 786 (C.D..Cal. 1983). The defendant
appealed, and the Ninth Circuit concluded that it could not hold that the trial court had erred in
ruling that Apple had shown a likelihood of success on the merits. 725 F.2d 521, 523 (9th Cir.
1984).

The defendant in Formula contended, inter alia, that a program is protected under the Copyright
Act only if the program embodies expression that is communicated to the user when the program
is run. 725 F.2d at 523-24. Operating system programs do not interact with the computer user;
they manage the computer. See supra notes 127-33 and accompanying text. The appellate court
concluded that the 1980 revision of the Copyright Act did not distinguish between programs that
interact with the user and those that manage the computer itself. 725 F.2d at 525.

560 714 F.2d at 1254.
561 In theory, the defendant who takes "the whole thing" could still escape a finding of infringe-

ment if (1) there are a limited number of ways of expressing the underlying idea; or (2) the
plaintiff's program was not original, but was copied from some other programs. See E.F. Johnson
Co. v. Uniden Corp., 623 F. Supp. 1485, 1499 (D. Minn. 1985).

For other cases in which the defendant copied the plaintiff's entire coded program, see M.
Kramer Mfg. Co. v. Andrews, 783 F.2d 421 (4th Cir. 1986) and Midway Mfg. Co. v. Strohon, 564
F. Supp. 741 (N.D. Ill. 1983). In Strohon, a videogame case, the plaintiff alleged that the defendant's

September 1988]
	

COPY RIGHTED SOFTWARE	 847

program function is, however, a mistake. If the unprotected idea in the plaintiff's

program is limited to the overall program function, the plaintiff receives a monopoly

over any ideas used within the program. A court's failure to recognize that any program

contains many ideas will deprive later program developers of their rightful use of the

ideas used in the original program.

Whelan, echoing Franklin's application of the idea/expression dichotomy to software,

deemed a program's unprotected ideas to be the program's purpose or function plus

everything in the program that is necessary to that purpose. 362 In one sense, everything

in a program is necessary to the overall program purpose, because everything works

toward the overall purpose. The Whelan court's meaning of "necessary," however, is

more limited than that. In the court's view, "[w]here there are various means of achieving

the desired [overall program] purpose, then the particular means chosen is not necessary

to the purpose; hence, there is expression, not idea." 365 The Whelan court, applying its

new rule, queried whether the defendants, in copying file structures, screen outputs,

and live subroutines, copied unprotected ideas or protected expression. The court stated

that "the purpose of [the plaintiff's program] was to aid in the business operations of a

dental laboratory." 364 Accordingly, the court analyzed whether anything in the program's

structure was necessary to that purpose. Because there were other dental lab operation

programs on the market with different structures, the court reasoned that the structure

of the plaintiff's program could not be necessary to the purpose. 365 The court distin-

guished Synercom by noting that in Synercom, the program's idea and expression could

not be identified separately. 366 Thus, by limiting the plaintiff's program's unprotected

game violated the plaintiff's program code copyright by copying significant portions of four ROMs

containing the instructions that directed the sequence of play. Id. at 752. The plaintiff established

that 89% of the 16,000 bytes of the plaintiff 's program was identically reproduced in the defendant's

ROMs. Id. The court rejected the defendant's contention that it should, in judging substantial

similarity, consider not just the similarity in the instruction ROMs but the plaintiff's and defendant's

full programs. Id. at 753 (stating that it would "surely be an infringement to copy one chapter of a

novel"). Accordingly, the Strohon court granted the preliminary injunction. Id. at 754.

The defendant in Hubco Data Prods. Corp. v. Management Assistance Inc., 219 U.S.P.Q.

(RNA) 450 (D. Idaho 1983), had developed a program for removing the governors that restricted

the plaintiff's operating systems program to below-peak levels of operation. The defendant's

method required copying the plaintiff's entire object code. The court granted a preliminary in-

junction.

352 See Whelan, 797 F.2d at 1236.

353 Id. (footnote omitted). The court noted and rejected the arguments against extending

copyright protection beyond protection for code copying. Id. at 1237-38.

The Whelan court viewed its rule as striking the correct balance — rewarding innovation without

giving innovators "a stranglehold over the development of new computer devices that accomplish

the same end." Id. at 1237.

The court indicated that copying of scenes a faire, although expression, is permitted because
the subject matter expressed through a scene a faire can be expressed no other way. Id. at 1236. See
supra notes 90-92 and accompanying text. No case yet has considered whether there are software

structures, sub-routines, or code phrases that parallel scenes a faire in literary work. The courts have
recognized scenes a faire in the videogame context. See, e.g., Atari, Inc. v. North Am. Philip Consumer

Elec. Corp., 672 F.2d 607, 616 (7th Cir.), cert. denied, 459 U.S. 880 (1982).

164 797 F.2d at 1238. The court noted that its rule might not apply to non-utilitarian works,

the purpose or function of which cannot be stated. Id.
"5 Id.
"6 Id. at 1240. The Whelan court disposed of Synercom further by noting that the copyright

statute now specifically extends copyright protection to "compilations" and "derivative works". Id,

848	 BOSTON COLLEGE LAW REVIEW	 [Vol. 29:803

idea to the program's purpose, the Whelan court concluded that the program's structure

was expression rather than idea. 387

The Whelan court's "rule" is a.blunt instrument. Under this rule, virtually nothing

may lawfully be borrowed from a copyrighted program; the rule limits the unprotected

idea to program function. Although the Whelan formula for the unprotected idea in-

cludes, in addition to overall program purpose, all that is "necessary" to that purpose,

the court answers the question of whether program content is necessary to the program

purpose by asking whether there are dissimilar programs that fulfill the same broad

purpose. If there are, the plaintiff's work's unprotected idea is limited to the program

purpose. A completed program necessarily contains many ideas, however, for ideas must

be applied to solve the program's subproblems." 8 Some levels of detailed problem-solving

beyond program purpose must be unprotected ideas. The question is at what point

between overall program purpose, the highest level of abstraction, and actual code, the

lowest level of abstraction, should a line be drawn. Accordingly, to say that nothing may

be taken from a program violates copyright law's axiom that copyright does not protect

the ideas used in a work. If everything beyond overall program purpose is protected

expression, copyright holders get more protection than they should. 889

The Whelan "rule" for distinguishing idea from expression may, of course, be

adjusted. If a lower court wishes to pay lip service to the Whelan rule, yet still reach the

conclusion that a defendant who has duplicated more than the plaintiff's program's

overall function has not infringed, the court may either define program purpose or

function more specifically or decide that what the defendant copied was necessary to

achieve the purpose. In a footnote, the Whelan court may have left an opening for such

interpretations, when the court stated that it "[did] not mean to imply that the idea or

purpose behind every utilitarian or functional work [would] be precisely what it accom-

at 1239. The court noted that a "compilation" is defined as "a work formed by the collection and

assembling of preexisting materials or of data that are selected, coordinated, or arranged in such a way

that the resulting work as a whole constitutes an original work of authorship ..." Id. (quoting part

of 17 U.S.C. § 101 (emphasis original to the case but not the statute)). Further, the court stated that

a "derivative work" is a work "based upon one or more preexisting works, such as ... [an]

abridgement, condensation or any other form in which a work may be recast, transformed, or adapted."

Id. The Whelan court concluded that Congress "intended sequencing and ordering [of data] to be

protectible in the appropriate circumstances." Id. at 1240.

567 1d. at 1238-39. The Whelan district court had also equated the unprotected idea with

program function, stating as follows:

[T]he mere idea or concept of a computerized program for operating a dental labo-

ratory would not in and of itself be subject to copyright The expression of the

idea ... is the manner in which the program operates, controls and regulates the

computer in receiving, assembling, calculating, retaining, correlating and producing

useful information.

Id. (quoting 609 F. Supp. 1307,1320 (E.D. Pa. 1985)).

568 See supra Parts III B and 1 V A.

569 The Whelan court should have realized that a program contains many unprotected ideas,

for the court began its analysis by describing the various steps involved in a program's creation.

The court noted that program design includes: (1) identifying the problem (in this case, record-

keeping for a dental laboratory); (2) developing an outline or "flow chart" breaking the solution

down into a series of smaller units; (3) creating data files to govern the arrangement of data input;

and (4) translating each step in the detailed design into a computer language such as EDL or

BASIC. 797 F.2d at 1229-30. The court did not, however, use these design concepts in developing

its "rule". See id. at 1236.

September 1988]	 COPYRIGHTED SOFTWARE 	 849

plishes, and that structure and organization [would] therefore always be part of the

expressiOn of such works.""" The court ' acknowledged that the idea or purpose under-

lying a utilitarian work could be "to accomplish a certain function in a certain way."371 In

that situation the structure of the program might be essential to that specific task, and

so be unprotected ideas." 2
Broderbund Software ; Inc. a. Unison World, Ine., 373 decided a few months after Whelan,

may be the first of many cases to follow Whelan's approach of equating idea and program

function. In Broderbund, Judge Orrick ruled that the separable idea of the plaintiffs'
program "Print Shop" was tO use computers to create greeting cards, banners, posters,
and signs." Judge Orrick held that, although other software publishers are free to
market programs designed to let the user create greeting cards, banners, posters and
signs, their expression of that idea must, to be nOn-infringing, be made "through a
substantially different structure" than that used by the plaintiffs. 375 Judge Orrick, com-
paring the plaintiff's "Print Shop" with the defendant's program, concludedthat the
defendant's program "looks like a copy of Print Shop', with a few embellishments
scattered about in no ,particular order." " 6 Judge Orrick held that the two programs'

sequences of screens, layout of screens, and method of user feedback were substantially
similar, and accordingly, ruled that the defendants infringed the plaintiff's copyright.'"

In Broderbund, the plaintiff did not claim that the defendant copied the code or even
the structure of the plaintiff's program. Instead, the plaintiff contended that "the overall
appearance, structure, and sequence of the audiovisual displays" of the defendant's
program infringed the plaintiff's copyright.'" The defendant argued, however, that the

57° id. at 1238 n.34.
971 id.
972 Id.
375 648 F. Supp. 1 127 (N.D. Cal. 1986).
374 Id. at 1133 (rioting Whelan's identification of Dentalab's idea, efficient organization of a

dental lab).
975 Id,

3" Id. at 1 137. The plaintiffs' "Print Shop" program operated only on Apple con -mutt:1 -s. The
defendant, Unison, specialized in converting other publishers' software to make it adaptable to
different computers. The plaintiff's, desiring an IBM version of "Print Shop," began discussing with
the defendant the possibility of' having Unison produce an exact reproduction of the original
program for IBM computers. One of the defendant's programmers then was directed to develop
a program as identical to "Print Shop" as possible, Id. at 1130-31. The programmer who created
the program for the plaintiff "very briefly showed the source code" to one of the defendant's

programmers." Id. Unison also had commercially available copies of the program. Id.

Unison's programmer had made considerable progress towards a reproduction of "Print Shop"
when negotiations between plaintiff and Unison broke down. The defendant's president instructed
the programmer to "stop copying 'Print Shop' and finish developing an enhanced version of the
greeting card program." Id. at 1131. By this time, however, the programmer already had finished
the menu screens and ten screens in the "greeting card" and "sign" functions. Id. When Unison
began marketing its program, the plaintiff' claimed that the overall appearance, structure, and
sequence of the audiovisual displays" in the defendant's program infringed the plaintiffs' copyright.
Id. at 1130.

377 /d. at 1137,
373 Id. at I ISO. Judge Orrick was incorrect when he stated that Whelan "stands for the propo-

sition that copyright protection is not limited to the literal aspects of a computer program, but
rather that it extends to the overall structure of a program, including its audio-visual displays." Id.

at 1133. The first part of that sentence is correct. The second clause, however, is inaccurate. See

Whelan, 797 F.2d at 1244.

850	 BOSTON COLLEGE LAW REVIEW	 [Vol. 29:803

idea underlying the menu screens, input formats, and screen sequencing was indistin-

guishable from the expression, because any menu-driven program that allows users to

print cards and signs must have a user interface like that of "Print Shop."379 The

Broderbund court, following Whelan, identified the overall program's function — create

greeting cards — as the unprotected idea, 38° and held that other expressions of the

function were not only possible, they were on the market. 381 The Broderbund court

apparently viewed the menu screens and sequence of screens as entirely expression, on

the grounds that they are neither the overall program function nor essential to that

function.

The Broderbund analysis contrasts sharply with ACA's analysis of a factually-similar

alleged infringement. In both cases the alleged infringement involved copying user

interface features rather than copying code. In Broderbund the court, adopting Whelan's
rule for separating idea from expression, equated overall program function with unpro-

tected idea. 38 '2 In DCA, however, the court "looked inside" the user interface features of

the two programs and characterized individual features as either idea or expression. 3"

Although Broderbund's holding of infringement appears correct given the extent of the

defendant's taking, Broderbund's idea/expression analysis based on Whelan is worrisome.

V. THE IMPACT OF THE W11E:LAN RULE

The separation of a work's ideas from its expression amounts to a judgment about

the degree of freedom to be given to subsequent authors and the degree of protection

to he given to the first author." 4 The copyright law axiom holds that expression is

protected, ideas are not. Identifying as expression that which the defendant took is, for

practical purposes, a conclusion of infringement. Nearly thirty years ago Judge Learned

Hand stated that "no principle can, be stated as to when an imitator has gone beyond

the 'idea,' and has borrowed [a work's] 'expression.' Decisions must therefore inevitably

379 648 F. Supp. at 1132.

38" hi. at 1133.

'HI Id. at 1132. The court quickly disposed of the defendant's merger argument, noting that

evidence at trial indicated that there were other programs that allowed users to do what the plaintiff's'

program did — print greeting cards, signs, banners, and posters. The court referred to one such

program, "Sticky Bear Printer," and determined that though the ideas of' "Print Shop" and "Sticky

Bear Printer" are the same, the expressions of those ideas, the menu screens and sequence of

screens, were different. Id. The presence of a same-function program with a different user interface

structure was, in judge Orrick's view, sufficient to disprove the defendant's merger contention. Id.
"2 Id. at 1133.

3" See 659 F. Supp. 449. 459 (N.D. Ga. 1987).

DCA and Broderbund also diverge on whether a program's copyright extends to the audiovisual

display. Broderbund held that copyright does extend to audio visual displays. 648 F. Supp. at 1133

(interpreting Whelan: "Whelan thus stands for the proposition that copyright protection is nut limited

to the literal aspects of a computer program, but rather that it extends to the overall structure of

a program, including its audiovisual displays."). In contrast, the DCA court held that the program

copyright does not extend to the screen display. 659 F. Stipp. at 455. The DCA court opined that

the Broderbund court erred by reading Whelan too expansively. Id. According to DCA, Broderbund's
conclusion on this question rested on "an over expansive and erroneous reading of Whelan." Id.

4N 4 Nimmer and Kratithaus, supra note 36, at 31. Those authors view all judgments defining a

work's ideas and its expression as "inherently unstable." Id. All aspects of a work, they say, "entwine

idea and expression." What constitutes expression and what constitutes an idea for purpose of
infringement reflects a judgment about the work and about whether protection should be granted

against a specific subsequent product." Id. (emphasis in original).

September 1988)	 COPYRIGHTED SOFTWARE	 851

be ad hoc."385 More recently commentators have criticized the idea/expression dichotomy

as lending itself to results-oriented decisions." Concern about results-oriented judicial

decisions is particularly well-founded in software copyright idea/expression cases, for it

is common in these cases for the plaintiff to have gone to great expense to develop and

market its software.387 To the extent that a judge is horrified by the "free ride" that a

defendant may get by taking some aspects of the plaintiff's expensively-developed soft-

ware or by mimicking the software's popular features, it is easy for a judge to conclude,

under an ad hoc approach, that what was taken by the defendant was protected expres-

sion.

That the Whelan cotirt desired to create a rule for separating a program's ideas from

its expression is understandable. The role stated in Whelan, though, is too blunt an

instrument. The Whelan court's rule makes everything in a copyrighted program pro-

tected expression. If "purpose" is defined as broadly as it was in Whelan — "aid in the

business operations of a dental lab" — there will always be various means of achieving

that purpose. One program might aid in the business operations of a dental laboratory

by handling orders; another might aid in the business operations of a dental laboratory

by automating billing; yet another program might achieve that broadly-stated purpose

through inventory control. None of the internal program content in any one of these

programs is necessary to the overall purpose, for the other two programs are alternate

means of aiding in the business operations of a dental laboratory. Under Whelan's rule,

then, each entire program — each "pakicular means chosen" — must be protected

expression rather than unprotected ideas""

In contrast to Whelan's rule, the principle of merger expands the range of existing

material that may lawfully be used by later authors. Merger permits second and later

authors to use a first author's expression when it is necessary to use that expression to

use the underlying idea."" Where the first author's expression is inseparable from the

ideas expressed, that expression may lawfully be used by others, for to protect the

expression would give the first author a monopoly on the idea. Whelan twists the merger

principle around: though merger makes unprotectable the expression that is necessary

for use of the underlying idea, Whelan's rule extends protection to all that is not necessary

for a broadly-defined desired purpose. As another writer has noted, Islomething could

both be unnecessary to achieve that [broadly-stated] purpose and he an idea that the

copyright laws do not (and should not) permit anyone to own.""'" While merger prohibits

idea monopolization, the Whelan rule, by making an entire "means chosen" protected

expression, permits idea monopolization.

Whelan's failure to recognize that program function and unprotected ideas are not

synonymous closes off from general use the ideas put to work in a protected program.

385 Peter Pan Fabrics, Inc. v. Martin Weiner Corp., 274 F.2d 487, 489 (2d Cir. 1960).

586 See supra notes 102-07 and accompanying text. One court has noted the criticism, but

characterized it as criticism "more of the application of the distinction than of the distinction itself."

See Sid & Marty Krofft. Television Prods., Inc. v. McDonald's Corp., 562 F.2d 1157, 1163 n.6 (9th

Cir. 1977).

"? See, e.g., Synercom Tech. Inc. v, University Computing Co., 462 F. Supp. 1003, 1008 (N.D.

Tex. 1978).

.9"1 See Whelan Assocs., Inc. v. Jaslow Dental Laboratory, Inc., 797 F.2d 1222, 1236 (3d Cir.

1986), cert. denied, 107 S. Ct. 877 (1987).

5" See Herbert Rosenthal Jewelry Corp. v. Kalpakian, 446 F.2d 738, 742 (9th Cir. 1971).

59" Stern, AlicroLaw: Software Copyright Developments, IEEE MICRO, 74, 75 (Dec., 1986).

852	 BOSTON COLLEGE LAW REVIEW	 [Vol. 29:803

While the authors of the CONTU report envisioned a world in which "programmers
are free to read copyright programs and use the ideas embodied in them in preparing
their own works," 392 the Whelan rule makes any use of a pre-existing program risky. 592
Appropriately, Whelan's. rule makes infringing the program prepared from an existing
program by the "clever copier" who uses a text-editor to make trivial changes in an
existing program. That rule also, however, makes infringing any translation of an existing
program, even the translation accomplished with great added effort. Any translation of
a program embodying "non-necessary" features of the original program is, under Whe-
lan's rule, a taking of protected expression. The programnier whose earlier works are
copyright-protected by his former employer Will not, under the Whelan rule, be able to
write programs similar even in structure and organization to his old programs. I...Aer
interface copying IS, tinder Whelan's rule, infringement if there is another way of doing
whatever was being done in the first program. 393

Whelan's rule for separating ideas from expression will, if followed, create a lopsided
intellectual property system that over-protects early developers at the expense of later
developers. Suppose a "Developer I" makes minor additions to a program that long has
been in common use among programmers. Because only minimal originality is required
for a "fixed" work to qualify for copyright protection, 5" Developer 1's program is
protected. If Developer I's protection extends to all in that program that is not necessary
to the overall program function, it appears that Developer I now has a years-long
intellectual property monopoly on the entire program, including the pant of the program
he or she took from the public domain. 395

In the software industry, it once was thought that "clean-room" procedures could
be used to ensure that a later program, "Program 2," based on some use of an earlier
program, "Program I," did not infringe Program 1. In a clean-room procedure, two
teams of programmers are set up to handle two separate tasks to create an emulator of

CONTU Report, supra note 33, at 40-9 I.
352 Suppose that Programmer #2, who wishes to create a spell-check program, studies an

existing spell-check program ("Program 1") which breaks the user-created dOcument into words,
compares each word with a dictionary, and prints non-matches. Under Whelan, Programmer #2 is
free to create a spell-check program, and he is free to use anything from Program 1 that is necessary
to the function "check spelling." Presumably breaking the document into words is necessary for
that function, as is using a dictionary comparison step. Suppose that Program I displays the non-
matches after each individual word is entered. The program could, however, display non-Matches
at the document's end. Is Programmer #2 prohibited frOiii choosing the "display non-matches"
route used in PrograM l? Program l's route is not necessary to the overall function "check spelling"
or even to the subfunction "display non-matches." Under Whelan, the display manner used in
Program 1 appears to he protected expression.

993 One commentator recently referred to the judicial trend in software copyright cases as "the
new protectionism." Karjala, 'supra note 36. The broad pi.oteetion that Whelan's rule gives the first
author's progritm is contrary to recent recommendations by Karjala and other commentators that
the level of copyright proteCtion given to programs be [Mined, See Goldstein, supra note 36; Menell,
'supra note 36, Nirrinter & Krauthaus, .supra note 36.

"4 E.g., Synercom Tech. v. University Computing Co., 462 F. Supp. 1003,1009-10 (N.D. Tex.
1978).

"5 A soniewhat analagOus situation arises with respect to derivative works. According to the
copyright statute's section im derivative works, the copyright in a derivative work does not extend
to preexisting Material not contributed by the author of the derivative work. 17 U.S.C. § 103(b)
(1982). Perhaps section 10.3(h)'s principle would he applied to the situation described in the text to
which this fOortiote is appended.

September 1988] 	 COPYRIGHTED SOFTWARE	 853

an existing program. One team analyzes the existing target software, learns how it works,
and then delivers specifications to the second team. The programmers on the second
team then write program code based on those specifications. The second team members
have no access to the original program's code, and the First team members have no part
in writing the new code. Prior to Whelan, it was thought that the resulting new code of
"Program 2" would embody only the ideas used in the first program lf, though, the
"idea" is limited to overall program function and whatever is necessary to the broadly-
stated function, much of what is passed on to team #2 in specifications is expression. 397

The clean-room procedure is used not just by those who want to emulate the features
of popular software, but also by those desiring to achieve compatibility with some popular
computer. The compatible computer must have operating systems software that mimics
the operating systems software used in the chosen model. For example, to make an IBM-
compatible computer a developer must provide a basic input/output system (BIOS). The
compatible computer's BIOS is the part of the operating system that interfaces between
the user's applications programs and the hardware, producing the same functional results
as the IBM BIOS for "interrupt" calls to given interrupt numbers. Under Whelan's rule
the interrupt numbers and parameters would be expression because the numbering
chosen by IBM and the parameters chosen are not necessary to the overall function of
serving as an interlace between user programs and hardware. 398 Additionally, the clone-
maker's emulator BIOS must have modules and subroutines that mimic the modules
and subroutines in the IBM BIOS. Under Whelan, however, the IBM BIOS module/
subroutine structure is protected expression rather than unprotected idea so long as
that particular structure is not necessary to the overall "interface with applications
prOgrams" function of the BIOS. A similarly-structured BIOS, even if' prepared through
clean-room procedures, would then be infringing, making it impossible to achieve com-
patibility without infringing a copyright. 399

There are two obvious cures for the over-protection that results from the Whelan
error of extending copyright protection beyond code without "looking inside" the pro-
tected program for unprotected ideas. First, courts could restrict software copyright
protection to literal code duplication. The second cure for Whelan's mistake is to extend
copyright protection for software beyond literal code, as Whelan did, but to use the
Hand-Nimmer "levels of abstractions" test to determine, on a case-by-case basis, at what

396 Stern, supra note 390, at 76-77; see Davis, supra note 127; Reback & Siegel, supra note 134
(applying "clean room" concept to goal of developing an IBM-PC compatible computer).

391 To go hack to the "spell-check" example used in Part Ill B, if learn 2 is told to develop a
spell-check program that displays non-matches after each word is entered, the route used in
Program 1, then expression is borrowed because there is an alternative — the non-matches could
he displayed at the end of the document entry.

Reback & Hayes, supra note 204, at 6. Reback and Hayes give other examples of Whelan's
long reach.

399 There are four possible solutions to the compatibility foreclosure problem. First, courts
could make operating systems software non-copyrightable. See Mend], supra note 31i; cf. Goldstein,
supra note 36, at 1126-30 (suggesting that fair use and "copyright misuse" doctrines may provide
a solution to this problem). Second, courts could treat organization copying done for compatibility
purposes as non-infringing fair use. A third solution might be to require that copyright holders
grant licenses to those who must mimic operating systems programs For compatibility purposes.
Finally, if program "purpose" is the unprotected idea, define the purpose of these programs in
terms of compatibility.

854	 BOSTON COLLEGE LAW REVIEW 	 [Vol. 29:803

level of abstraction between overall program function and actual code protection should

begin. Other commentators already have suggested that because software is created

under top-down program design principles,"° the Hand-Nimtner abstractions test is

particularly appropriate for software. 401 Uniden also suggests that approach. 4 °2

In 'applying the abstractions test to software, the code is the lowest level of abstrac-

tion; the overall program function —"check spelling," or "assist in the efficient operation

of a dental laboratory" — is the highest level of abstraction. For a spell-check program

the second highest level of abstraction would appear to be the subfunctions picked for

that program — "divide user document into words," "check words in dictionary," and

"display non-matches." The modules and subroutines are more abstract than the code

but less abstract than the overall function. The modules may he dictated by the overall

function and thus ideas, or they may be expression. The same is true of subroutines. At

this level the functionally-suggested modular structure should be open for use by all as

should common or "libraried" subroutines, just as in literature, under the scenes a faire
doctrine, stock or standard characters may be used by later writers:'" A functionally-

required modular or subroutine structure would be unprotected either as an idea or

under the merger doctrine. 404 Perhaps the Plains appellate court was suggesting such an

approach for that case. The court, affirming the lower court's denial of a preliminary

injunction, stated that while it saw similarities between plaintiff's and defendant's works,

the record supported an inference that market factors were significant in determining

the sequence and organization of cotton marketing softw. are. 415 The court declined to

hold that those patterns could not be ideas in a computer context. 406

Drawing the line between a program's idea and its expression is, as critics of the

idea/expression analysis have said, ultimately a policy judgment on the scope of protec-

tion.'"" The idea/expression line drawing is meant to be used to balance the right of the

copyright holder with the rights of other creators. 4" The level-of-abstractions analysis is

the most principled manner of balancing these interests.

Section I 02(b) of the Copyright Act not only makes the ideas in a copyrighted work

unprotected, it also makes processes and methods unprotected. The Whelan court did

not consider that protection of program structure could violate section 102(b)'s prohib-

ition against protecting processes or methods. 4 °9 If the unprotected idea is limited to the

overall program function, as in Whelan, the copyright holder receives a monopoly on

400 See supra Part III B.

40 ' See supra notes 203-04 and accompanying text.

4"2 See E.F. Johnson Co. v. Uniden Corp., 623 F. Supp. 1485, 1501 n.17 (D. Minn. 1985). See

supra Part IV B for a discussion of' Uniden.
"'See supra notes 90-92 and accompanying text.
404 See supra notes 82-89 and accompanying text.

1"5 807 F.2d at 1262.

4 °6 Id.

107 See supra notes 102-07 and accompanying text.

408 See Chafee, supra note 56, at 511-14.

4°9 In Whelan the Third Circuit adopted functional, "process-like" language to describe expres-

sion, approvingly quoting the trial court's definition of expression as "the manner in which the

program operates, controls and regulates the computer in receiving, assembling, calculating, re-

taining, correlating, and producing useful information either on a screen. print-out or by audio

communication." 797 F.2d at 1239.

September 1988]	 COPY RIGHTED SOFTWARE	 855

the process or method. Use of the Hand-Nimmer levels of abstractions test on a case-

by-case basis would allow courts to leave "the process" unprotected• 1 N

Applying an abstractions test to a program is inure difficult than applying the Whelan
rule — the court must. "look inside" the program to apply the abstractions test. Courts

cannot apply the abstractions test to software without help from experts. If the plaintiff's

program is written in one programming language and the defendant's in another, use

of an expert is necessary to show to what extent the defendant's work tracks the plaintiff's

work. The software copyright cases have recognized the necessity of using experts.'"

VI. Conclusion

Now that it is clear that copyright protects computer programs, courts will be called

upon to decide what, in a given program, is protected expression and what is unprotected

idea. The separation of a program's expression from its ideas should be done on a case-

by-case basis. Protection should not be restricted to protection against literal code du-

plication or code paraphrasing, For it is easy to make a program look different from one

that was copied. Beyond that, because coding is the last step in developing a program,

'lc Cf. Karam, supra note 36, at 30-33 (slightly different approach to the use of section 102(1))'s

prohibition on process protection in software infringement cases).

411 See Whelan, 797 F.2d at 1233; SAS Inst., Inc. v. S & H Computer Sys., Inc., 605 F. Stipp.

816, 818 (M.D. Tenn. 1985).

Generally the Courts have stated that the factual question of substantial similarity in copyright

cases should be answered by applying an "ordinary observer's" reaction to the two works. 3 M.

Nimm ER, supra note 5, § 13.03EN. According to the "lay observer" or "audience reaction" test, an

"ordinary person" should be able to detect the defendant's literary piracy without any suggestion

or critical analysis by others. Id. Some courts have interpreted this statement as prohibiting the use

or expert testim ony in the factual determination of substantial similarity. Nimmer criticizes this

approach, stating that there are numerous instances where the "ordinary observer" cannot detect

appropriation. Id. § 13.03[E], at 13-52. Nimmer argues that there is no reason to disallow suggesting

and pointing out similarity if the suggestion will help the trier of fact see that the plaintiff's work

formed the basis for defendant's work. Id.

Modifications of the "ordinary observer" test have been developed by the federal Courts of'

Appeal for the Second Circuit. and Ninth Circuit, where many of the major copyright cases are

filed. In Arnstein v. Porter, a music copying case, the Second Circuit bifurcated the question of

substantial similarity into two sub-questions. On the first question, whether the defendant copied

from plaintiff's work, both protectible and non-protectible (i.e., idea-level) elements of the works

are compared; expert analysis and dissection, are permitted. Once copying has been established,

the question or whether the defendant's appropriation is unlawful must then be decided according

to the "ordinary observer" test. 154 F.2d 464, 468-69 (2d Cir. 1946).

Over thirty years later, the Ninth Circuit developed its own application of Arnstein's bifurcation.

See Sid & Marty Kraft Television Prods., hie. v. McDonald's Corp., 562 F.2(1 1157, 1164 (9111

1977). The Krafft court recognized that similarity of expression, not just ideas, must be present for

a copyright infringement to exist. As a starting point, however, the court 'mist determine whether

the plaintiff's and defendant's works have even idea-level similarities. That determination, called

"extrinsic" in Krafft, may be based on specific criteria and with the help of analytic dissection and
expert testimony. /d. If the works have idea-level similarities, the question of' whether there is

substantial similarity between the two works at the level of protected expression (the "intrinsic"

question) must be made on an ad hoc basis by the trier of fact using the responses of an ordinary

reasonable person. Id. The "extrinsic" determination may be made as a matter of law on a motion

for summary judgment. See Fryharger v. International Business Mach. Corp., 812 F.2d 525, 528

(9th Cir. 1987).

856	 BOSTON . COLLEGE LAW REVIEW	 [Vol. 29:803

a program's expression begins somewhere between the overall program function and

the code.

If "expression" is something more than code — if a copyright holder is protected

from non-literal use of his work —• any program is likely to contain many unprotected

ideas. Courts can, by using the traditional "level of abstraction" approach, draw the line

between what is free for use by others and what is protected.

